ДИАГНОСТИКА ГИПОФОСФАТАЗИИ ВО ВЗРОСЛОМ ВОЗРАСТЕ: КЛИНИЧЕСКИЕ СЛУЧАИ И ОБЗОР ЛИТЕРАТУРЫ

© С.Т. Магеррамова*, Ю.В. Тютюгина, Ж.Е. Белая

ФГБУ «Национальный медицинский центр эндокринологии» Минздрава России, Москва, Россия

Гипофосфатазия (HPP) — наследственное метаболическое заболевание, характеризующееся низкой активностью ткань-неспецифической щелочной фосфатазы (TNAP) вследствие мутаций в гене *ALPL* [1]. Низкая активность TNAP приводит к системному накоплению его субстратов, а именно неорганического пирофосфата (PPi), сильного ингибитора минерализации, и пиридоксаль-5′-фосфата (PLP), кофактора нескольких ферментов, которые в значительной степени объясняют скелетно-мышечные и системные особенности заболевания. Гипофосфатазия характеризуется широким спектром проявлений и различной степенью тяжести: от бессимптомного течения у носителей мутации ALPL до внутриутробной смерти при перинатальной форме. В данной статье будет рассмотрена манифестация заболевания во взрослом возрасте, которая требует дифференциальной диагностики с постменопаузальным остеопорозом.

КЛЮЧЕВЫЕ СЛОВА: гипофосфатазия; мутация в TNSALP; асфотаза альфа; клинический случай.

HYPOPHOSPHATASIA DIAGNOSIS IN ADULTS: CLINICAL CASE AND LITERATURE REVIEW

© Sara T. Magerramova*, Yuliya V. Tyutyugina, Zhanna E. Belaya

Endocrinology Research Centre, Moscow, Russia

Hypophosphatasia (HPP) is an inherited metabolic disease characterized by low activity of tissue non-specific alkaline phosphatase (TNAP) due to mutations in the *ALPL* gene [1]. The low activity of TNAP leads to the systematic accumulation of its substrates, namely inorganic pyrophosphate (PPi), a strong inhibitor of mineralization, and pyridoxal-5'-phosphate (PLP), a cofactor of several enzymes, which largely explain the musculoskeletal and systemic features of the disease. Hypophosphatasia is characterized by a wide range of manifestations and varying degrees of severity: from asymptomatic course in carriers of the *ALPL* mutation to intrauterine death in perinatal form. This article will discuss the manifestation of the disease in adulthood, which requires differential diagnosis with postmenopausal osteoporosis.

KEYWORDS: hypophosphatasia; TNSALP mutation; asfotase alfa; case report.

АКТУАЛЬНОСТЬ

К настоящему времени зарегистрировано более 400 мутаций гена *ALPL* (в основном миссенс) https://alplmutationdatabase.jku.at/portal/, наследуемых либо аутосомно-доминантным, либо рецессивным способом. Тяжелое течение гипофосфатазии встречается редко, его частота составляет от 1:100 000 живорождений в Канаде [2] до 1:300 000 в Европе [3], в то время как предполагаемая распространенность сравнительно более легкой взрослой формы составляет от 1:3100 до 1:508 у европейцев [4, 5, 6].

С момента первого описания заболевания Дж. К. Ратбуном в 1948 г. [7] достигнут значительный прогресс в изучении патофизиологии, а также в диагностике и лечении гипофосфатазии [8, 9, 10, 11].

Из-за редкой встречаемости заболевания, недостаточной осведомленности практикующих врачей о данной патологии и отсутствия патогномоничных симптомов, особенно при легкой форме у взрослых, все еще существуют значительные трудности в его своевременной диагностике и, соответственно, лечении [12].

Классификация гипофосфатазии основана на возрасте пациента на момент появления первых признаков или симптомов заболевания. Таким образом выделяют перинатальную, инфантильную, детскую, взрослую формы заболевания и одонтогипофосфатазию [13]. Большинству клинических форм заболевания присущи одни и те же признаки и симптомы с перекрывающимися клиническими проявлениями, которые различаются по интенсивности. Хотя серьезные осложнения возникают преимущественно в детском возрасте, они могут развиться в любом возрасте [14].

При перинатальной форме гипофосфатазии, наиболее тяжелой форме заболевания, признаки заболевания могут присутствовать при УЗИ-скрининге. Так могут выявляться признаки укорочения трубчатых костей, их деминирализации. Эта форма заболевания проявляется диффузной деминерализацией костей, гипоплазией легких, дыхательной недостаточностью, требующей искусственной вентиляции легких, гипотонией и судорогами, обусловленными дефицитом витамина В6 в центральной нервной системе, отсутствием нормального набора веса. Перинатальная форма гипофосфатазии имеет

Received: 02.08.2024. Accepted: 08.11.2024

^{*}Автор, ответственный за переписку / Corresponding author.

неблагоприятный прогноз и при отсутствии лечения приводит к летальному исходу [15, 16, 17].

Инфантильная форма гипофосфатазии проявляется в первые 6 месяцев жизни и может варьироваться от легкой степени до тяжелой [13]. У пациентов с инфантильной формой гипофосфатазии наблюдаются изменения костей, типичные для рахита, такие как утолщение реберно-хрящевых сочленений, расширение суставных щелей, неоднородная структура метафиза и деформации конечностей. Низкий рост и мышечная слабость способствуют задержке моторного развития [13, 18].

Одонтогипофосфатазия, наиболее распространенная форма заболевания, проявляется ранней потерей молочных зубов в детстве или ранней потерей коренных зубов во взрослом возрасте при отсутсвии костных аномалий. Потеря зуба происходит при неповрежденном корне и вызвана аномалиями цемента, что приводит к ослаблению прикрепления зуба в альвеоле [20].

Ранняя потеря зубов может наблюдаться при всех формах гипофосфатазии и является важным признаком заболевания в детском возрасте [21].

Взрослая форма гипофосфатазии характеризуется повышенным риском переломов, особенно характерны переломы плюсневых костей и переломы бедра, которые можно классифицировать как атипичные переломы, мышечной слабостью и хронической мышечно-скелетной болью [19]. Кроме того, избыток неразрушенного пирофосфата откладывается в суставах и хрящах в виде пирофосфата кальция, что приводит к хондрокальцинозу, болевому синдрому и клинически проявляется более быстрым прогрессированием остеоартрита и в ряде случаев — ранними заменами суставов [22]. Эктопическая кальцификация различной степени тяжести является частым проявлением взрослой формы гипофосфатазии [23]. Ввиду неспецифичности симптомов пациент с гипофосфатазией может получать лечение остеоартроза и остеопороза, оставаясь недиагностированным, при этом наиболее часто применяемые препараты для лечения остеопороза — бисфосфонаты (БФ) [24, 25] — являются аналогами пирофосфата и противопоказаны при гипофосфатазии. Таким образом, важно, чтобы у врачей, которые занимаются проблемой остеопороза, сохранялась настороженность в отношении этого редкого заболевания, которое может быть впервые диагностировано среди старшей возрастной группы. Мы представляем клинический случай пациентки с манифестацией гипофосфатазии во взрослом возрасте.

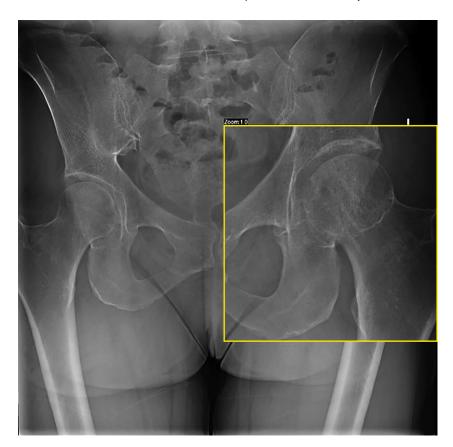
ОПИСАНИЕ СЛУЧАЯ

Пациентка А. 55 лет обратилась с жалобами на мышечные боли во всем теле, усиливающиеся утром, скованность по утрам, мышечные спазмы, судороги жевательных, шейных, икроножных мышц преимущественно вечером, головные боли, боли в пояснице тянущего характера. При осмотре: телосложение правильное, нормостеническое (ИМТ — 24,1 кг/ M^2). Из анамнеза известно, что у пациентки уже были переломы плюсневой кости и перелом бедра, возникшие при минимальной травме, а также другие переломы (табл. 1). Пациентка наблюдается у невролога с диагнозом: хроническая, ежедневная головная боль, обусловленная дисфункцией перикраниальных и жевательных мышц; торсионная дистония, краниальная дистония в виде дистонического тризма, дистонический тремор головы. Длительное время получает лечение: клоназепам по 1/4 таблетки на ночь (прием нерегулярный), баклофен (миорелаксант центрального действия) 10 мг по 1 таблетке на ночь.

При многократных исследованиях щелочная фосфатаза находилась ниже референсного интервала: впервые в возрасте 51 года — 23 Ед/л (40—120), в этом же возрасте у пациентки наступила менопауза. В возрасте 50 лет у пациентки произошел перелом шейки левой бедренной кости при падении с высоты собственного роста, который плохо заживал несмотря на проведенное хирургическое лечение. На тот момент, при денситометрии, минеральная плотность костной ткани (МПКТ) в L1–L4 — -1,4SD, в шейке бедра — -0,1SD, total — -1,6SD по Z-критерию. Пациентка нерегулярно принимала альфакальцидол 0,25 мкг/сут, от предложенной инфузии золедроновой кислоты 5 мг воздержалась. При контрольной денситометрии в возрасте 55 лет отмечалась отрицательная динамика: МПК в L1–L4 — -2,2SD, в шейке бедра — -2,4SD, все бедро — -1,5SD по Т-критерию, по всей видимости, обусловленная

Таблица 1. Переломы в анамненезе пациентки

Возраст	Локализация перелома	
17 лет	Перелом костей в области левого голеностопного сустава	
45 лет	Перелом мизинца левой стопы (ударилась об дверной косяк)	
49 лет	Перелом шейки левой бедренной кости (при падении с высоты собственного роста)	
52 года	Перелом основания V плюсневой кости левой стопы (подвернула ногу)	
54 года	Перелом основной фаланги второго пальца левой стопы без смещения (ударилась о камень во время плавания)	
54 года	Перелом основания V плюсневой кости правой стопы	
55 лет	Закрытый краевой перелом надколенника без смещения, дегенеративное повреждение наружного мениска (упала на колени)	


Таблица 2. Данные лабораторного обследования пациентки

Показатель	Результат	Референсные интервалы
Кальций скорректированный на альбумин, ммоль/л	2,27	2,15–2,6
Фосфор, ммоль/л	1,33	0,74–1,52
Магний, ммоль/л	0,94	0,7–1,05
Щелочная фосфотаза, ед/л	29 (двумя днями позже 29)	40–150
Глюкоза, ммоль/л	5,08	3,1-6,1
Креатинин, мкмоль/л (рСКФ)	69,6 (85 мл/мин/1,73 м²)	50-98
Железо, мкмоль/л	18,1	9–30,4
ТТГ, мМЕ/л	1,22	0,25–3,5
Паратгормон, пг/мл	25,08	15–65
С-концевой телопептид, нг/мл	0,65	0,3–1,1
Остеокальцин, нг/мл	25,31	15–65
Витамин D, нг/мл	32	>30

менопаузой. В возрасте 54 лет в связи с многократно подтвержденным низким уровнем щелочной фосфатазы у пациентки была заподозрена гипофосфатазия, и проведено секвенирование по Сенгеру, выявлен описанный ранее как патогенный вариант нуклеотидной последовательности в экзоне 4 гена *ALPL* c.211C>T, в гетерозиготном состоянии приводящий к миссенс-замене.

Пациентке было проведено обследование для оценки состояния фосфорно-кальциевого обмена, все показатели были в пределах референсных значений, за исключением щелочной фосфатазы, которая при двукратном определении была снижена до 29 Ед/л (40–150) (табл. 2).

Проведена постуральная рентгенограмма нижних конечностей (рис. 1), выявлено укорочение шейки левой бедренной кости на фоне консолидированного перелома слева с деформацией субкапитальной зоны, консолидированный перелом основания тела левой седалищной кости с деформацией подвздошно-седалищной борозды, асимметрия лобкового симфиза с опущением и смещением кзади левой половины до 0,6 мм, ротационные подвывихи головок бедренных костей, больше слева, видимое сужение левого запирательного отверстия на фоне опорной перенагрузки с наружного ребра правой стопы на зону левой пятки.

Рисунок 1. Консолидированный перелом основания тела левой седалищной кости с деформацией подвздошно-седалищной борозды.

Рисунок 3. МРТ поясничного отдела позвоночника.

При исследовании состояния костной ткани маркеры костного обмена — в пределах референсных значений: остеокальцин — 25,31 нг/мл (24,0-70,0), С-концевой телопептид коллагена 1 типа — 0,65 нг/мл (0,10-0,85). По данным МРТ грудного и поясничного отделов позвоночника (рис. 2, 3) — картина дегенеративно-дистрофических изменений (остеохондроз, спондилоартроз), грыжа межпозвонкового диска на уровне Th5-6 и Th8-9, выстояние межпозвонкового диска на уровне Th7-8, Th11-12, Th12/L1 и L4/L5, гемангиома в теле Th8 позвонка, протрузия межпозвонкового диска на уровне L4/L5. Данных за наличие компрессионных переломов позвонков не выявлено. По данным рентген-денситометрии выявлено снижение МПКТ в L1-L4 до -2.5 SD по Т-критерию — соответствует остеопорозу, в шейке левой бедренной кости — до -2.2 SD, в бедре в целом — до -1.9 SD, в лучевой кости — 1/3 до -2.0 SD по Т-критерию.

Для оценки толерантности к физической нагрузке проведен тест с 6-минутной ходьбой — дистанция составила 162,5 метра при нормальном значении от 450 метров.

Таким образом, анамнестические данные о переломе плюсневой кости и переломе бедра в возрасте 50 лет, значительное снижение функциональных возможностей (тест с 6-минутной ходьбой 162 м), многократное подтверждение сниженного уровня щелочной фосфатазы крови и гетерозиготная мутация в гене ALPL, для которой характерен доминантно-негативный эффект, позволяют верифицировать диагноз гипофосфатазии, в том числе согласно консенсусу о диагностике гипофосфатази у взрослых [26]. Пациентке рекомендована терапия препаратом асфотаза альфа, от которого ожидается эффект как для предупреждения новых патологических переломов, так и для восстановления ее функциональных возможностей.

ОБСУЖДЕНИЕ

Данный клинический случай подтверждает, что ГФФ взрослых по своему клинико-инструментальному проявлению имеет сходство с системным остеопорозом. Единственным отличием является низкий уровень ЩФ, который может быть ошибочно интерпретирован как проявление низкой интенсивности костного обмена. Следует помнить, что диагноз ГФФ не исключает развитие постменопаузального остеопороза. Так, у женщин в постменопаузе и у мужчин старше 50 лет в костной ткани, помимо типичных для гипофосфатазии нарушений нормального формирования гидроксиаппатита, могут происходить процессы избыточного разрушения костной ткани с потерей костной массы, нарушением микроархитектоники костной ткани, типичными для остеопороза [27]. При этом назначения бисфосфонатов в качестве терапии остеопороза могут способствовать дальнейшему снижению ЩФ и, возможно, усугублять течение гипофосфатазии, провоцируя в том числе атипичные переломы [25].

В литературе описаны схожие клинческие случаи. В одном случае больную длительно лечили альфакальцидолом и препаратами кальция по поводу ошибочного диагноза — постменопаузальный остеопороз, осложненный переломом тела позвонка, — хотя при обращении у пациентки отмечалось типичное для гипофосфатазии снижение уровня ЩФ. В другом случае у пациента с диагнозом «Асептический некроз головки бедренной кости» при обследовании на выявление отклонений метаболизма костной ткани (при асептическом некрозе возможны такие нарушения, и они требуют коррекции в до- и в послеоперационном периоде) выявлено резкое снижение уровня ЩФ [28]. В обоих случаях диагноз был подтвержден при генетическом исследовании. При этом выявленный генетический вариант как правило влияет

на клиническую картину заболевания: так, при незначительной потере активности фермента у человека могут быть минимальные нарушения с развитием симптоматики по мере истощения активности фермента ЩФ. Различная степень потери активности ЩФ может объяснять широкую картину манифистации заболевания от минимальных проявлений до летальной формы с первыми проявлениями внутриутробно [26].

До недавнего времени единственно возможным методом лечения гипофосфатазии оставалась симптоматическая терапия. В 2008 г. был создан новый препарат с лабораторным кодом ENB0040, Asfotase Alfa, зарегистрированный в октябре 2015 г. в США [29]. На сегодняшний день асфотаза альфа одобрена во многих странах, в том числе в России, для лечения гипофосфатазии. Асфотаза альфа (STRENSIG) представляет собой рекомбинантный белок, состоящий из внеклеточной части ТНЩФ, участка константного Fc-региона иммуноглобулина G1 человека и минералосвязывающего мотива дека-аспартата, направляющего рекомбинантный белок к поверхности кости [30]. В литературе есть сообщение об эффективности применения асфотазы альфа в случае позднего установления диагноза при детской форме [31]. Вместе с тем, хотя клинические исследования проводились при включении детской формы заболевания, пациенты с более мягким течением и условно взрослой формой могут получить пользу и полное восстановление от фермент-заместительной терапии асфотазой альфа [28]. Согласно консенсусу экспертов, опубликованному в 2023 г., данный клинический случай соответствует критериям диагностики взрослой формы гипофосфатазии (имеется стойкое снижение уровня ЩФ, патогенная мутация в гене ALPL, атипичный плохо заживающий перелом бедра, переломы плюсневых костей, снижение функциональных возможностей) [26]. Соответственно, мы можем ожидать предупреждения новых переломов и восстановление функциональных возможностей при назначении терапии. Вместе с тем, согласно инструкции к препарату, исследования проводились только при детской форме гипофосфатазии, и назначение препарата в данном случае должно производиться по врачебной комиссии.

ЗАКЛЮЧЕНИЕ

Гипофосфатазия является гетерогенным заболеванием с разной степенью тяжести, которое может поражать все возрастные группы. Нижние пределы уровней ЩФ, которые могут быть характерны для ГФФ, по-прежнему в значительной степени игнорируются, что затрудняет диагностику заболевания и установление его фактической распространенности среди населения. Для правильной интерпретации уровней ЩФ необходимо учитывать значения, характерные для возраста и пола пациента. Адекватное и своевременно начатое лечение гипофосфатазии имеет основополагающее значение, поскольку лекарственные препараты, обычно используемые для лечения других метаболических заболеваний костей, могут ухудшать ее течение.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Источники финансирования. Статья опубликована в рамках выполнения государственного задания №НИОКТР 124020700097-8 при финансовой поддержке Министерства здравоохранения Российской Федерации.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.

Участие авторов. Все авторы одобрили финальную версию статьи перед публикацией, выразили согласие нести ответственность за все аспекты работы, подразумевающую надлежащее изучение и решение вопросов, связанных с точностью или добросовестностью любой части работы.

Согласие пациента. Пациенты добровольно подписали информированное согласие на публикацию персональной медицинской информации в обезличенной форме (именно в этом журнале).

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- Whyte MP. Hypophosphatasia aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233-46. doi: https://doi.org/10.1038/nrendo.2016.14
- FRASER D. Hypophosphatasia. Am J Med. 1957;22(5):730-46. doi: https://doi.org/10.1016/0002-9343(57)90124-9
- Mornet E, Yvard A, Taillandier A, Fauvert D,
 Simon-Bouy B. A molecular-based estimation
 of the prevalence of hypophosphatasia
 in the European population. *Ann Hum Genet*. 2011;75(3):439-45.
 doi: https://doi.org/10.1111/j.1469-1809.2011.00642.x
- Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. *Ann Hum Genet*. 2011;75(3):439-45. doi: https://doi.org/10.1111/j.1469-1809.2011.00642.x
- Mornet E, Taillandier A, Domingues C, Dufour A, Benaloun E, et al. Hypophosphatasia: a genetic-based nosology and new insights in genotype-phenotype correlation. Eur J Hum Genet. 2021;29(2):289-299. doi: https://doi.org/10.1038/s41431-020-00732-6
- García-Fontana C, Villa-Suárez JM, Andújar-Vera F, González-Salvatierra S, Martínez-Navajas G, et al. Epidemiological, Clinical

- and Genetic Study of Hypophosphatasia in A Spanish Population: Identification of Two Novel Mutations in The Alpl Gene. *Sci Rep.* 2019;9(1):9569. doi: https://doi.org/10.1038/s41598-019-46004-2
- Rathbun JC. Hypophosphatasia; a new developmental anomaly. Am J Dis Child. 1948. doi: https://doi.org/10.1001/archpedi.1948.02030020840003
- 8. Rockman-Greenberg C. Hypophosphatasia. *Pediatr Endocrinol Rev.* 2013;10(2):380-8
- Bishop N. Clinical management of hypophosphatasia. Clin Cases Miner Bone Metab. 2015;12(2):170-3. doi: https://doi.org/10.11138/ccmbm/2015.12.2.170
- Jemmerson R, Low MG. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase. *Biochemistry*. 1987;26(18):5703-9. doi: https://doi.org/10.1021/bi00392a019
- Seetharam B, Tiruppathi C, Alpers DH. Hydrophobic interactions of brush border alkaline phosphatases: the role of phosphatidyl inositol. *Arch Biochem Biophys*. 1987;253(1):189-98. doi: https://doi.org/10.1016/0003-9861(87)90651-5
- Seefried L, Dahir K, Petryk A, Högler W, Linglart A, et al. Burden of Illness in Adults With Hypophosphatasia: Data From the Global Hypophosphatasia Patient Registry. J Bone Miner Res. 2020;35(11):2171-2178. doi: https://doi.org/10.1002/jbmr.4130

- Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone. 2015;75:229-39. doi: https://doi.org/10.1016/j.bone.2015.02.022
- 14. Bianchi ML, Bishop NJ, Guañabens N, Hofmann C, Jakob F, et al. Hypophosphatasia in adolescents and adults: overview of diagnosis and treatment. *Osteoporos Int*. 2020;31(8):1445-1460. doi: https://doi.org/10.1007/s00198-020-05345-9
- Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904-13. doi: https://doi.org/10.1056/NEJMoa1106173
- Baujat G, Michot C, Le Quan Sang KH, Cormier-Daire V. Perinatal and infantile hypophosphatasia: clinical features and treatment. *Arch Pediatr*. 2017;24(5S2):5S61-5S65. doi: https://doi.org/10.1016/S0929-693X(18)30016-2
- Guguloth A, Aswani Y, Anandpara KM. Prenatal diagnosis of hypophosphatasia congenita using ultrasonography. *Ultrasonography*. 2016;35(1):83-6. doi: https://doi.org/10.14366/usg.15008
- Rothenbuhler A, Linglart A. Hypophosphatasia in children and adolescents: clinical features and treatment. Arch Pediatr. 2017;24(5S2):5S66-5S70. doi: https://doi.org/10.1016/S0929-693X(18)30017-4
- Conti F, Ciullini L, Pugliese G. Hypophosphatasia: clinical manifestation and burden of disease in adult patients. Clin Cases Miner Bone Metab. 2017;14(2):230-234. doi: https://doi.org/10.11138/ccmbm/2017.14.1.230
- Bloch-Zupan A, Vaysse F. Hypophosphatasia: oral cavity and dental disorders. Arch Pediatr. 2017;24(5S2):5S80-5S84. doi: https://doi.org/10.1016/S0929-693X(18)30020-4
- Sobel EH, Clark LC Jr, Fox RP, Robinow M. Rickets, deficiency of alkaline phosphatase activity and premature loss of teeth in childhood. *Pediatrics*. 1953;11(4):309-22
- Chuck AJ, Pattrick MG, Hamilton E, Wilson R, Doherty M. Crystal deposition in hypophosphatasia: a reappraisal. *Ann Rheum Dis*. 1989;48(7):571-6. doi: https://doi.org/10.1136/ard.48.7.571
- Koga M, Kinoshita Y, Kato H, Kobayashi H, Shinoda Y, et al. Massive calcification around large joints in a patient subsequently diagnosed with adult-onset hypophosphatasia. *Osteoporos Int.* 2022;33(2):505-509. doi: https://doi.org/10.1007/s00198-021-06145-5
- 24. Белая Ж.Е., Рожинская Л.Я.. Новые направления в терапии остеопороза применение моноклональных человеческих антител к RANKL (Деносумаб) // Ocmeonopos и ocmeonamuu. 2011. —

- T. 14. № 2. C. 23-26 [Belaya ZhE, Rozhinskaya LYa. Novye napravleniya v terapii osteoporoza primenenie monoklonal'nykh chelovecheskikh antitel k RANKL (Denosumab). *Osteoporosis and Bone Diseases*. 2011;14(2):23-26. (In Russ.)] doi: https://doi.org/10.14341/osteo2011223-26
- Белая Ж.Е., Рожинская Л.Я. Бисфосфонаты в терапии постменопаузального остеопороза // Доктор.Ру. 2010. Т. 58. № 7-2. С. 29-38 [Belaya ZhE, Rozhinskaya LYa. Bisfosfonaty v terapii postmenopauzal'nogo osteoporoza. *Doktor.Ru.* 2010;58(7-2):29-38 (In Russ.)]
- Khan AA, Brandi ML, Rush ET, Ali DS, Al-Alwani H, et al. Hypophosphatasia diagnosis: current state of the art and proposed diagnostic criteria for children and adults. *Osteoporos Int*. 2024;35(3):431-438. doi: https://doi.org/10.1007/s00198-023-06844-1
- 27. Belaya Z, Rozhinskaya L, Dedov I, Drapkina O, Fadeev V, et al. A summary of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis. *Osteoporos Int*. 2023;34(3):429-447. doi: https://doi.org/10.1007/s00198-022-06667-6
- 28. Родионова С.С., Захарова Е.Ю., Буклемишев Ю.В., Хакимов У.Р., Лапкина С.В. Гипофосфатазия у взрослых: клинические случаи и обзор литературы // Ocmeonopos и ocmeonamuu. 2015. Т. 18. №2. С. 25-28. [Rodionova SS, Zakharova EYu, Buklemishev YuV, Khakimov UR, Lapkina SV. Hypophosphatasia in adults: clinical cases and literature review. Osteoporosis and Bone Diseases. 2015;18(2):25-28. (In Russ.)] doi: https://doi.org/10.14341/osteo2015225-28
- 29. Alexion.com [Internet]. FDA Approves StrensiqTM (asfotase alfa) for Treatment of Patients with Perinatal-, Infantile- and Juvenile-Onset Hypophosphatasia (HPP). Available from: https://alexion.com/Documents/Strensiq_USPI
- 30. Khan AA, Josse R, Kannu P, Villeneuve J, Paul T, et al. Hypophosphatasia: Canadian update on diagnosis and management. *Osteoporos Int*. 2019;30(9):1713-1722. doi: https://doi.org/10.1007/s00198-019-04921-y
- 31. Калинченко Н.Ю., Голоунина О.О., Гребенникова Т.А., Мельниченко Г.А., Тюльпаков А.Н., Белая Ж.Е. Опыт клинического применения асфотазы альфа у молодого пациента с детской формой гипофосфатазии // Ocmeonopoз и ocmeonamuu. 2019. Т. 22. №1. С. 24-29. [Kalinchenko NY, Golounina OO, Grebennikova TA, Melnichenko GA, Tiulpakov AN, Belaya ZhE. Clinical application experience of asfotase alfa for a young patient with childhood hypophosphatasia. Osteoporosis and Bone Diseases. 2019;22(1):24-29. (In Russ.)] doi: https://doi.org/10.14341/osteo10136

ИНФОРМАЦИЯ ОБ ABTOPAX [AUTHORS INFO]

* Магеррамова Сара Тофиковна, клинический ординатор [Sara T. Magerramova, medical resident]; адрес: 117292, Москва, ул. Дмитрия Ульянова, д. 11 [address: Moscow, Russia, 11, Dm. Uliyanova str., Moscow, 117292, Russia]; ORCID: https://orcid.org/0000-0002-8860-8509; SPIN: 6694-2647; e-mail: sara.magerramova@mail.ru

Тютюгина Юлия Валерьевна, клинический ординатор [Yuliya V. Tyutyugina, medical resident]; адрес: 117292, Москва, ул. Дмитрия Ульянова, д. 11 [address: Moscow, Russia, 11, Dm. Uliyanova str., Moscow, 117292, Russia]; ORCID: https://orcid.org/0000-0003-3452-4868; SPIN: 9866-4539; e-mail: seriesman06@gmail.com **Белая Жанна Евгеньевна**, д.м.н., заведующая отделением остеопороза и остеопатий [Zhanna E. Belaya, MD, PhD, head of department]; ORCID: https://orcid.org/0000-0002-6674-6441; SPIN-код: 4746-7173; AuthorID: 583971; e-mail: jannabelaya@gmail.com

*Автор, ответственный за переписку / Corresponding author.

ИНФОРМАЦИЯ

Рукопись получена: 02.08.2024. Одобрена к публикации: 08.11.2024.

информация

Магерранова С.Т., Тютюгина Ю.В., Белая Ж.Е. Диагностика гипофосфатазии во взрослом возрасте: клинические случаи и обзор литературы // *Ocmeonopos и ocmeonamuu*. — 2024. — Т. 27. — №4. — С.11-16. doi: https://doi.org/10.14341/osteo13180

TO CITE THIS ARTICLE:

Magerramova ST, Tyutyugina YV, Belaya ZE. Hypophosphatasia diagnosis in adults: clinical case and literature review. *Osteoporosis and bone diseases*. 2024;27(4):11-16. doi: https://doi.org/10.14341/osteo13180