ЭФФЕКТ БЕТА-АДРЕНОБЛОКАТОРОВ НА МИНЕРАЛЬНУЮ ПЛОТНОСТЬ КОСТИ

И ОСТЕОПОРОТИЧЕСКИЕ ПЕРЕЛОМЫ. Обзор литературы

К.Е. СОБЧЕНКО*1, И.А. СКРИПНИКОВА2, Э.С. АБИРОВА3, П.А. ПТИЧКИНА4

і аспирант отдела профилактики остеопороза ФГБУ «Государственный научно-исследовательский центр профилактической медицины» Минздрава России ,

² руководитель отдела профилактики остеопороза ФГБУ ГНИЦПМ Минздрава России, 3 старший научный сотрудник отдела профилактики остеопороза ФГБУ ГНИЦПМ Минздрава России ⁴ научный сотрудник отдела профилактики остеопороза ФГБУ ГНИЦПМ Минздрава России

В обзоре представлены современные данные о плейотропных эффектах бета-адреноблокаторов, в частности, о влиянии на костную массу и развитие переломов на фоне хрупкости костной ткани. Обсуждаются механизмы действия бета-адреноблокаторов на костный метаболизм и возможности их протективного эффекта на костную ткань в комплексной терапии ССЗ.

Ключевые слова: бета-адреноблокаторы, остеопороз, остеопоротические переломы.

Атеросклероз и остеопороз — широко распространенные хронические заболевания, развивающиеся в поздних возрастных периодах человека и зачастую протекающие бессимптомно до появления осложнений — сердечно сосудистых инцидентов и остеопоротических переломов. В круп-

ных проспективных исследованиях была показана связь между сердечно-сосудистыми заболеваниями, связанными с атеросклерозом (ССЗ-АС), и остеопорозом, которая не зависела от возраста. Для оценки этой ассоциации и, возможно, общих механизмов развития заболеваний, наиболее часто использовались суррогатные маркеры: сосудистая кальцификация — для атеросклероза и минеральная плотность кости (МПК) — для остеопороза. Дальнейшие исследования позволили сделать вывод о том, что остеопороз и связанные с ним переломы, также как и ССЗ-АС, вносят существенный вклад в структуру заболеваемости и смертности населения [1]. В дополнительном анализе исследования MORE (Multip leOutcomesofRaloxifeneEvaluation) было показано, что пациенты с остеопорозом имели высокий риск заболеваемости ССЗ-АС и смертности от них, который увеличивался пропорционально тяжести остеопороза. Женщины, имеющие множественные переломы перед вступлением в исследование, имели в 5 раз больший риск ССЗ-АС [2]. В ряде клинических исследований была продемонстрирована ассоциация низкой МПК с инфарктом миокарда, острым коронарным синдромом и сердечной недостаточностью II и III функционального класса [3,4,5]. Высказывалось мнение, что низкая МПК является независимым фактором риска атеросклероза коронарных артерий [6].

Поскольку ССЗ-АС значительно снижают качество жизни и характеризуются высокой преждевременной смертностью, препараты для лечения артериальной гипертонии (АГ) и ишемической болезни сердца (ИБС) занимают ведущие позиции по частоте назначения как врачами кардиологами, так и врачами общей практики. Например, бета-адреноблкаторы (β-АБ), по данным Pharmacy times, входят в число самых продаваемых кардиологических препаратов [7]. В свою очередь, длительный опыт применения препаратов этой группы позволил не только хорошо изучить их эффективность при лечении ССЗ, но и выявить дополнительные (плейотропные) эффекты, одним из которых является влияние β-АБ на костный метаболизм.

β-АБ представляют собой группу препаратов, специфически блокирующих бета-1,2 адренорецепторы, которые преимущественно локализуются в сердце, сосудах и бронхах. Проведённые недавно исследования показали, что β2 адренорецепторы имеются также и в костных клетках (остеобластах). На основании этого возникло предположение, что костный метаболизм может регулироваться симпатиче-

ской нервной системой (СНС) [8]. Влияние СНС на костное ремоделирование происходит при помощи лептина — белка, образующегося в адипоцитах и участвующего в регуляции энергетического обмена. В экспериментах на мышах введение лептина в желудочки головного мозга приводило к активации СНС и стимуляции остеобластов. В то же время, у мышей с дефектом гена, кодирующего дофамин-бета-гидроксилазу — энзим, ответственный за синтез адреналина и норадреналина, была отмечена более высокая костная масса и замедленный костный обмен. Введение этим мышам симпатомиметиков вызвало уменьшение количества остеобластов и очагов формирования кости, что привело к снижению МПК [9].Описаны и другие механизмы влияния β-АБ на костные клетки. При стимулирующем воздействии СНС на β2-адренорецепторы остеобластов происходит экспрессия лиганда активатора рецептора ядерного фактора kappa-B (RANKL), который взаимодействует с RANK и активирует созревание и дифференцировку остеокластов. Эти процессы приводят к усиленному разрушению костной ткани (резорбции) и к увеличению скорости костного обмена [10]. Блокада β-адренорецепторов остеобластов позволяет приостановить этот процесс и уменьшить потерю костной массы. С другой стороны, при терапии β-АБ происходит снижение продукции цАМФ, трансмиттера, синтезирующегося из АТФ при участии аденилатциклазы. Так как он является важным элементом передачи сигнала для некоторых гормонов и нейромедиаторов, регулирующих функции и метаболические процессы остеобластов, его дефицит, в конечном итоге, может привести к возможному отрицательному влиянию на кость [11].

Прочность кости зависит от количества костной массы, эквивалентом которой является МПК, и качества костной ткани, характеризуемого несколькими параметрами, из которых наиболее доступной для оценки является скорость костного метаболизма. Способность β-АБ оказывать влияние на скорость костного обмена подтверждена исследованиями, в которых анализировалась динамика маркеров костного метаболизма на фоне терапии. В двухлетнем наблюдательном исследовании Pasco J.A. и соавт., у 197 женщин в раннем постменопаузальном периоде уровень маркера костной резорбции — С-терминального телопептида (СТХ) в плазме крови был значительно ниже у пациенток, принимающих β-АБ, в сравнении с теми, кто не принимал препараты [12]. На основании этого, авторы предположили, что β-АБ подавляют костную резорбцию. В рандомозированном плацебоконтролируемом исследовании Reid I.R. и соавт. у женщин в постменопаузальном периоде, принимающих пропранолол

^{*} e-mail: KSobchenko@gnicpm.ru

в дозе 160 мг/сут в течение 3-х месяцев, уже через 2 недели терапии было отмечено достоверное снижение уровня маркёра костного образования — остеокальцина (на 20 %), которое сохранялось до конца лечения, а также не значимое снижение концентрации показателя костной резорбции — С-телопептида коллагена I типа, связанного поперечными сшивками (СТХ). В этом исследовании у пациенток, принимающих пропранолол, было выявлено снижение уровня альбумина крови и повышение уровня креатинина, что позволило авторам предположить, что действие пропранолола на костные маркёры может быть опосредовано изменением почечной функции и уровня жидкости в организме [13]. Однако в другом одномоментном исследовании, выполненном по типу «случай-контроль», отмечены сходные изменения уровня остеокальцина и снижение уровня деоксипиридинолина (ДПИД) — другого маркера костной резорбции (на 10%) при длительном применении β-АБ у женщин в перименопаузе [14].

Таким образом в данных работах было показано, что β -АБ уменьшают активность остеобластов и подавляют активность остеокластов, тем самым снижая скорость костного обмена. Но для выяснения, на какой из процессов, формирование или резорбцию, преимущественно влияют β -АБ, необходимы дальнейшие исследования.

Большинство исследований, в которых изучалась ассоциация β-АБ с костной тканью, были наблюдательными. Как правило, они преследовали иные цели, и эффект β-АБ на МПК маркеры костного ремоделирования, а также на риск переломов анализировался ретроспективно (Geelong Osteoporosis study, Study of Osteoporosis Fractures — SOF, Danish Osteoporosis Prevention Study — DOPS, EPIDOS, Rotterdam Study и др.) [15,16,14,17,18]. Анализ эффективности β-АБ в этих исследованиях осложнялся тем, что основная группа и группа сравнения во многом различались по параметрам, которые сами по себе могли оказывать влияние

на количество и качество костной ткани. Например, в SOF пациенты, принимавшие β-АБ, имели достоверно больший вес, чаще использовали тиазиды, статины и заместительную гормональную терапию (ЗГТ), меньше курили и реже принимали глюкокортикоиды. Поэтому МПК проксимального отдела бедра, сначала более высокая у пациентов леченных как селективными, так и не селективными β-АБ (на 1%), после коррекции факторов риска достоверно не различалась [18]. Аналогичные результаты были получены в EPIDOS, где преимущество МПК в 2% у лиц, использующих β-АБ, нивелировалось после поправки на другие факторы риска остеопороза [19]. Различия в сравниваемых группах отмечались и в других исследованиях, что затрудняло их анализ. Однако имеются и другие работы, где убедительно показано позитивное влияние β-АБ на костную массу. Австралийские учёные в крупномасштабном 20-летнем исследовании с участием 3 488 пациентов, среди которых было 2 203 женщины и 1 285 мужчин показали, что регулярный приём В-АБ позволяет увеличить МПК и предотвратить развитие остеопороза у 50 % пациентов [20]. Достоверно более высокая МПК была отмечена и в проспективном исследовании Turker S. и соавт. у лиц, принимающих препараты из этой группы, по сравнению с группой нелеченных пациентов [21]. А в работе Bonnet N. и соавт. различие в МПК на 2% между леченными и нелеченными пациентами сохранялось и после анализа, учитывающего другие факторы, такие как вес и сопутствующая терапия [17].

Результаты экспериментальных и клинических работ, свидетельствующие о влиянии СНС на остеогенез и костный обмен, послужили поводом для изучения эффектов блокаторов СНС на частоту переломов, которые являются основным осложнением остеопороза. Клиническим свидетельством положительного влияния β-АБ на костный обмен явилось снижение частоты переломов на фоне терапии в ряде одномоментных и проспективных исследований (табл. 1).

Исследования, отражающие эффекты β-АБ на костную ткань

Таблица 1

Исследование (год, автор)	Осн. группа/ Контроль (n/n)	Сред- ний возраст	% женщин	Типы переломов, которые учитывались в исследовании	Отношение шансов или отно- сительный риск (95%ДИ)	Корректировка факторов риска
Случай-контроль						
Jensen, 1991	200/200	81	82	Шейка бедра	0,85 (0,35—1,12)	Возраст, пол, количество госпитализаций.
Rejnmark, 2004	163/978	50	100	Позвоночник, бедро	3,3 (1,1—9,4)	Возраст, пол, длительность ПМ, вес, физическая активность, поступление кальция и вит.Д, уровень КЩФ и остеокальцина
Pasco, 2006	569/775	70/70	100	Любые	0,68 (0,49—0,96)	Возраст, пол, вес, рост
Schlienger,2004	30601/120819	Не уста- новлен	60	Любые	0,77 (0,72—0,83)	Возраст, пол, курение, прием лекарств
Rejnmark, 2006	124655/373962	43/43	52	Любые	0,91 (0,88—0,93)	СП, прием лекарств, социальный статус.
De Vries, 2007 UKGPD	22247/22247	>80	76	Бедро	0,82 (0,74—0,91)	Риск падений, СП, прием лекарств, ИМТ.
De Vries, 2007 PHARMO	6763/26341	~80	73	Бедро	0,87 (0,8—0,95)	СП, прием лекарств.
Когортное						
Levasseur, 2005	7598	81	100	Все кроме позвоночника	1,2 (0,9—1,5)	Возраст, пол,
Reid, 2005	8412	77	100	Любые	0,91 (0,79, 1,05)	Возраст, пол, вес, прием лекарств, курение.
Schoofs, 2005	7892	>55	Не уста- новлено	Предплечье, бедро, таз	0,67 (0,46—0,97)	Возраст, пол, МПК, ИМТ, ССЗ, ГБ, прием лекарств

Примечание: ΠM — постменопауза, $K \coprod \Phi$ — костная щелочная фосфатаза, $C\Pi$ — сопутствующая патология. ΓB — гипертоническая болезнь.

В популяционном исследовании женщин старше 50 лет (Geelong Osteoporosis Study) была оценена связь β-АБ с МПК и переломами, в результате чего авторы подтвердили ассоциации приема β-АБ с высокой МПК и низким риском переломов [15].

В Роттердамском исследовании, которое включало 7892 женщин и мужчин, было показано, что β-АБ снижали риск периферических переломов (ОR 0,67, 95% ДИ; 0,46-0,97), но не влияли на переломы позвонков [16]. В другом ретроспективном исследовании женщин постменопаузального периода, проведенном по типу «случай-контроль», обнаружено снижение риска любых переломов во всех возрастных группах и, особенно, у пациенток старше 70 лет. Из исследования были исключены пациентки, принимающие статины, тиазидные диуретики, заместительную гормональную терапию (ЗГТ) и препараты, влияющие на костный обмен [17].

Для оценки влияния B-AБ на переломы костей двумя группами авторов проанализированы результаты из исследовательской базы данных общей медицинской практики Англии (UK General Practice Research Database — GPRD). В одно крупное наблюдательное исследование было включено 30601 пациентов с переломами и почти 121000 пациентов без переломов (контрольная группа), использующих β-АБ в качестве монотерапии или в сочетании с тиазидными диуретиками. В результате было показано снижение риска переломов на 23% у пациентов, леченных только β – $A\bar{b}$ (OR 0,77, 95% ДИ, 0,72-0,83) и на 29% — у пациентов, получающих комбинированную терапию (ОК 0,71, 95% ДИ, 0,64-0,79) с учетом коррекции на пол, возраст, вес, курение и использование других медикаментов [22]. Другое исследование провели DeVriesF. и соавт., использовавшие английскую GPRD и датскую PHARMO (RecordLinkageSystem — RLS) базы данных, анализ которых продемонстрировал снижение риска перелома шейки бедра на 13% на материале GPRD и на 18% — у пациентов из RLS. Интересно отметить, что снижение риска перелома шейки бедра не зависело от кумулятивной дозы препарата, а протективный эффект В-АБ на костную ткань проявлялся лишь у селективных препаратов или в случаях сочетания их с другими антигипертензивными средствами, что заставило авторов предположить о преимущественном влиянии на костную ткань других сердечнососудистых препаратов [23]. В сходное по дизайну датское 5-летнее, популяционное фармако-эпидемиологическое исследование, выполненное по типу «случай-контроль» было включено 124 655 пациенток с переломами и 373 962 пациенток без переломов, стратифицированных по возрасту и полу. С учетом коррекции на перенесенные заболевания, социально-экономические факторы и используемые препараты было показано статистически значимое уменьшение количества переломов разных локализаций (ОК 0,91, 95% ДИ, 0,88-0,93) и, в частности, переломов шейки бедра (OR 0,91, 95% ДИ, 0,85-0,98), следовательно — снижение риска всех переломов на 9 %. В отличие от исследования DeVriesF. и соавт. эффект β-АБ был дозозависимым [24]. В мета-анализе, включавшем в себя 8 исследований типа «случай-контроль» и одно когортное исследование, был подтвержден превентивный эффект В-АБ в отношении любых остеопоротических переломов, в том числе и перелома шейки бедра [25].

Итак, в большинстве одномоментных исследований получены доказательства протективного действия β–АБ на костную ткань. В проспективных исследованиях, имеющих большую эпидемиологическую ценность, чем вышеперечисленные исследования, проведенные по типу «случай-контроль», не представлено четких выводов в отношении воздействия блокаторов СНС на кость.

В одном из наиболее крупных исследований — Study of Osteoporotic Fracture (SOF), включившем 8412 постмено-

паузальных женщин, наблюдавшихся в течение 7 лет было показано, что β –АБ не снижают риск переломов. Тем не менее, после того как препараты были разделены на кардиоселективные и не селективные, оказалось, что первые снижают риск переломов бедра на 34% с поправками на разные факторы риска (ОR 0,66, 95%ДИ, 0,49-0,90) и на 24% без коррекции в регрессионном анализе (ОR 0,76, 95%ДИ, 0,58-0,99) [13]. В недавнем исследовании MONICA 1793 человек старше 55 лет, наблюдавшихся в течение 10,7 лет, было обнаружено снижение количества переломов на 40% у лиц, принимавших селективные β –АБ [26].

Однако некоторые проспективные исследования не поддержали гипотезу о защитном действии В-АБ на костную ткань. В датском 5-летнем исследовании — Danish Osteoporosis Study (DOPS) было проанализировано 2016 амбулаторных карт постменопаузальных женщин, из которых только 38 принимали β-АБ. Количество переломов в группе лечения было достоверно более высоким (ОК 3.3: 95%ДИ. 1,1-9,4) [14]. В другом исследовании по изучению факторов риска переломов у пожилых людей (EPIDOS) с периодом наблюдения 14 лет оценивался эффект кардиоселективных В-АБ. Из большой выборки (7598 женщин) только 3,4 % получали препараты из этой группы. В результате не было найдено ассоциации между приёмом β-АБ и риском переломов (ОК 1,2, 95%ДИ; 0,9-1,5) [19]. Авторы полагают, что отсутствие положительного эффекта β-АБ на риск переломов в этих двух исследованиях связан с небольшим числом пациентов, получающим препараты данной группы. Еще одно исследование, выполненное Rejnmark L.P. и соавт., на репрезентативной когорте постменопаузальных женщин выявило трехкратное увеличение риска переломов у лиц, принимающих β-АБ более 8 лет. Эти данные ассоциировались со снижением уровня остеокальцина в крови — маркера костеобразования, но не сопровождались уменьшением МПК [14]. В мета-анализе 8 РКИ неселективных β-АБ (карведилола) в лечении хронической сердечной недостаточности, которую относят к факторам риска остеопороза, не было получено данных в поддержку протективного действия препарата на костную ткань (RR 1,15, 95%ДИ;0б81-1,64). Информация о падениях в данном исследовании была не доступна [27]. Недавнее канадское исследование показало, что наиболее подвержены риску переломов пожилые пациенты, которые только начали принимать антигипертензивные препараты. Так при изучении баз данных были отслежены случаи перелома шейки бедра у пожилых жителей Онтарио в период с 2000 по 2009 годы. Отобрав 301596 человек, наблюдаемых в промежутке 450 дней до и после начала лечения, было обнаружено, что 43% из 1453 переломов произошли в первые 45 дней от начала приема препаратов. Установлено, что из 5 исследуемых групп препаратов только на фоне приема ингибиторов ангиотензин-превращающего фермента (иАПФ) (OR 1.58, 95% ДИ 1.12—2.10) и β -АБ (OR 1.58, 95% ДИ 1,01—2.48) демонстрируется статистически значимое различие между группами. По мнению авторов, возросшее количество переломов связано не с изменением свойств костной ткани на фоне лечения, а скорее с развитием ортостатических колебаний АД, являющихся частыми осложнениями антигипертензивной терапии [28].

Токег А. и соавт., высказали предположение, что селективные β-АБ такие как небивалол, имеют более выраженный протективный эффект на кость из-за вазодилатирующего эффекта, связанного с усилением синтеза оксида азота, который также принимает участие в процессе дифференцировки и пролиферации остеобластов [25]. Кроме того, известно, что оксид азота является важным элементом неоангиогенеза — процесса, необходимого для успешной консолидации переломов [30].

Таким образом, на сегодняшний день сделать однозначный вывод о влиянии β-АБ на костную ткань не представ-

ляется возможным. Противоречивость данных может быть объяснена различным дизайном исследований, возможными побочными эффектами терапии (например, колебаниями АД и головокружениями, повышающими склонность к падениям), а также отсутствием в ряде работ данных о факторах риска переломов, таких как индекс массы тела, физическая активность, степень снижения МПК, наличие хронических заболеваний, сопутствующая терапия, продолжительность постменопаузального периода у женщин.

Поскольку лечение $\hat{C}C3$ - $\hat{A}C$ и остеопороза требует длительного и регулярного приема препаратов, а терапевтическая эффективность во многом зависит от комплаентности и приверженности терапии, то лекарственные препараты, которые могут влиять на оба заболевания одновременно, будут способствовать повышению мотивации пациента и улучшению комплаенса. И поэтому, несомненно, появившиеся за последние годы данные о влиянии β -AБ на костную ткань могут быть очень полезными в выборе терапевтической тактики у пациентов с CC3, имеющих факторы риска или признаки снижения костной массы. В свою очередь, влияние β -AБ на костную ткань требует дальнейшего изучения в специально спланированных контролируемых рандомизированных исследованиях, где в качестве конечных точек будут рассматриваться остеопоротические переломы.

SUMMARY.

This review presents the current data on the pleiotropic effects of beta-blockers in particular on the effect on bone mass and fracture development by means of increased bone fragility. In this article we discuss the mechanisms of action of beta-blockers on bone metabolism and their possible protective effect on bone tissue in the treatment of cardiovascular disease.

Keywords: beta-blockers, osteoporosis, osteoporotic fractures.

ЛИТЕРАТУРА:

- 1. Browner W.S., Seeley D.G., Vogt T.V. Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 1991; 338: 335—38
- 2. Tanko L.B., Christiansen C., Cox D.A., et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 2005; 20: 1912—1920.
- 3. Magnus J.H., Broussard D.L., Relationship between BMD and myocardial infarction in US adults. Osteoporos Int 2005; 16: 2053—2062.
- 4. Perez-Castrillon J.L., Abad L., Vega G., et al. Bone mineral density, bone remodeling and osteoprotegerin in patients with acute coronary syndrome. Int JCardiol 2008; 129: 144—145.
- 5. Kenni A.M., Boxer R., Walsh S., et al. Femoral BMD in patients with heart failure. Osteoporos Int. 2006; 17: 1420—1427.
- 6. von der Recke P., Hanse M.A., Hassanger C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 1999; 106:273—278.
- 7. Bartholow M. Top 200 prescription drugs of 2009, Pharmacy Times 2010.
- 8. Moore R.E., Smith C.K., Bailey C.S. et.al. Characterisation of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can simulate bone resorption in organ culture. J Bone Miner Res 1993; 23:301—15.
- 9. Takeda S., Elefteriou F., Levasseur R., et. al. Leptin inhibits bone formation via the sympathetic nervous system. Cell 2002; 189: 47—60.
- 10. Ducy P., Amling M., Takeda S. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100: 197—207.

- 11. Majeska R.J., Minkowitz B., Bastian W., Einhorn T.A. Effects of beta-adrenergic blockade in an osteoblast-like cell line. J Orthop Res 1992; 10: 370—84.
- 12. Pasco J.A., Henry M.J., Nicholson G.C., et.al. B-blockers reduce bone resorption marker in early postmenopausal women. Ann Human Biol. 2005: 32: 738—745
- 13. Reid I.R., Lucas J., Wattie D., et al. Effects of a betablocker on bone turnover in normal postmenopausal women. Randomized controlled trial. J Clin Endocrinol Metab 2005; 90: 5212—16.
- 14. Rejnmark L., Vestergaard P., Kassem M., et.al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 2004; 75: 365—372.
- 15. Pasco J.A., Henry M.J., Sanders K.M., et.al. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004; 19: 19—24.
- 16. Schoofs M., Sturkenboom P., Van Leeuwen J., et.al. Use of beta-blockers is associated with BMD and fracture risk. Bone 2005; 36 S2: 129—130.
- 17. Bonnet N., Gadois C., McCloskey E., et.al. Protective effect of beta-blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 2007; 40: 1209—1216.
- 18. Reid I.R, Gamble G.D., Grey A.B, et al. Beta-blockers use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 2005; 20:613—8
- 19. Lavasseur R., Marcelli C., Savatier J.p. et al. Betablockers use, BMD, and fractures risk in older women: results from the Epidemiologie de L'Osteoporose Prospective Study. J Am Geriatr Soc 2005; 53: 550—552.
- 20. Yang S., Nguyen N.D., Center J.R., et.al. Association between beta-blockers use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 2011; 48(3): 451—455.
- 21. Turker S., Karatosun V., Gunai I. Beta-blockers increase bone mineral density. Clin Orthop 2006; 443: 73—74.
- 22. Schlienger R.G., Kraenzlin M.E., Jick S.S., Meier C.R. Use of beta-blockers and risk of fractures. JAMA 2004; 292: 1326—32.
- 23. de Vries F., Souverein P.C., Leufkens H.G., van Staa T.P. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int 2007; 80: 69—75.
- 24. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 2006; 24: 581—9.
- 25. Weins M., Etminan M., Gill S.S., Takkouche B., Effects of antihypertensive drug treatments on fractures outcomes: a meta-analysis of observational studies. Journal of international studies 2006; 260: 350—62.
- 26. Meisinger C., Heier M., Lang O., Doring A. Beta-Blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Ausburg cohort study. Osteoporos Int 2007; 18(9): 1189—95.
- 27. Reid I.R., Gamble G.D., Grey A.B. et.al. Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 2005; 20: 613—8.
- 28. Butt D.A., Mamdani M., Austin P.C. et.al. The risk of hip fracture after initiating antihypertensive drugs in the eldery. Arch Intern Med 2012; 172(22): 1739—44.
- 29. Toker. A, Gulcan E., Toker S., et.al. Nebivolol might be beneficial in osteoporosis treatment: a hypothesis. TJPR 2009; 8(2): 181—186.
- 30. Гудырев О.С. Остеопротективное действие эналаприла и лазартана при эксперементальном остеопорозе и переломах на его фоне. Автореферат 2009.