Preview

Osteoporosis and Bone Diseases

Advanced search

Bone pathology in chronic kidney disease

https://doi.org/10.14341/osteo12943

Abstract

The article presents current data on mineral and bone disorders in patients with various stages of chronic kidney disease. The key points of bone lesions pathology are reflected, which include impaired secretion of parathyroid hormone and phosphorus-calcium metabolism, specific osteopathy and extraskeletal calcification, the relationship between bone pathology and cardiovascular complications is indicated. The role of diagnostic tools (FRAX questionnaire, bone densitometry, biochemical parameters and new biological markers) is discussed, approaches to the interpretation of research results are defined. Both general population and specific risk factors for bone strength decrease and occurrence of osteoporotic fractures pathology in chronic kidney disease are described.

About the Authors

N. V. Karlovich
Belarusian State Medical University
Belarus

Natalia V. Karlovich, MD, PhD, Assistant Professor

220040, Minsk, Nezavisimosti ave, 64



T. V. Mokhort
Belarusian State Medical University
Belarus

Tatiana V. Mokhort, MD, PhD, Professor

Minsk



A. G.  Sazonava
Republican Center of Medical Rehabilitation and Balneotherapy
Belarus

Alena G. Sazonava, MD, PhD

Minsk



References

1. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013;3:S1-S150.

2. Bello AK, Levin A, Lunney M, et al. Status of care for end stage kidney disease in countries and regions worldwide: international cross sectional survey. BMJ. 2019;367: l5873. doi: https://doi.org/10.1136/bmj.l5873

3. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945-1953. doi: https://doi.org/10.1038/sj.ki.5000414

4. Moe SM. Renal Osteodystrophy or Kidney-Induced Osteoporosis? Curr Osteoporos Rep. 2017;15(3):194-197. doi: https://doi.org/10.1007/s11914-017-0364-1

5. Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis. 2016;67(4):559-566. doi: https://doi.org/10.1053/j.ajkd.2015.06.023

6. Slatopolsky E, Gonzalez E, Martin K. Pathogenesis and treatment of renal osteodystrophy. Blood Purif. 2003;21(4-5):318-326. doi: https://doi.org/10.1159/000072552

7. Spasovski GB. Bone biopsy as a diagnostic tool in the assessment of renal osteodystrophy. Int J Artif Organs. 2004;27(11):918-923. doi: https://doi.org/10.1177/039139880402701103

8. Trueba D, Sawaya BP, Mawad H, Malluche HH. Bone biopsy: indications, techniques, and complications. Semin Dial. 2003;16(4):341-345. doi: https://doi.org/10.1046/j.1525-139x.2003.160631.x

9. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014;25(10):2359-2381. doi: https://doi.org/10.1007/s00198-014-2794-2

10. Bellasi A, Raggi P. Bone metabolism and cardiovascular disease: An overlooked association? Atherosclerosis. 2021;335:87-88. doi: https://doi.org/10.1016/j.atherosclerosis.2021.09.009

11. Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, et al. Chronic Kidney Disease-Mineral and Bone Disorders: Pathogenesis and Management. Calcif Tissue Int. 2021;108 (4):410-422. doi: https://doi.org/10.1007/s00223-020-00777-1

12. Horl WH. The clinical consequences of secondary hyperparathyroidism: focus on clinical outcomes. Nephrol Dial Transplant. 2004;19(5):v2-v8. doi: https://doi.org/10.1093/ndt/gfh1049

13. Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489-1501. doi: https://doi.org/10.1007/s00198-011-1824-6

14. Beaubrun AC, Kilpatrick RD, Freburger JK, et al. Temporal Trends in Fracture Rates and Postdischarge Outcomes among Hemodialysis Patients. J Am Soc Nephrol. 2013;24(9):1461-1469. doi: https://doi.org/10.1681/ASN.2012090916

15. Chandran M, Wong J. Secondary and tertiary hyperparathyroidism in chronic kidney disease: An endocrine and renal perspective. Indian J Endocrinol Metab. 2019;23(4):391-399. doi: https://doi.org/10.4103/ijem.IJEM_292_19

16. Wagner J, Jhaveri KD, Rosen L, et al. Increased bone fractures among elderly United States hemodialysis patients. Nephrol Dial Transplant. 2014;29(1):146-151. doi: https://doi.org/10.1093/ndt/gft352

17. Tentori F, Wang M, Bieber BA, et al. Recent Changes in Therapeutic Approaches and Association with Outcomes among Patients with Secondary Hyperparathyroidism on Chronic Hemodialysis: The DOPPS Study. Clin J Am Soc Nephrol. 2015;10(1):98-109. doi: https://doi.org/10.2215/CJN.12941213

18. Rivet J, Lebbé C, Urena P, et al. Cutaneous Calcification in Patients With End-Stage Renal Disease. Arch Dermatol. 2006;142(7):900-906. doi: https://doi.org/10.1001/archderm.142.7.900

19. Moe SM, Drüeke T, Lameire N, Eknoyan G. Chronic Kidney Disease–Mineral-Bone Disorder: A New Paradigm. Adv Chronic Kidney Dis. 2007;14(1):3-12. doi: https://doi.org/10.1053/j.ackd.2006.10.005

20. Weisinger JR, Bellorin-Font E. Outcomes associated with hypogonadism in women with chronic kidney disease. Adv Chronic Kidney Dis. 2004;11(4):361-370. doi: https://doi.org/10.1053/j.ackd.2004.07.009

21. Coco M. In Reply: Fragility fractures in chronic kidney disease: A clarification of views. Cleve Clin J Med. 2010;77(2):75. doi: https://doi.org/10.3949/ccjm/77c:02004

22. Zayour D, Daouk M, Medawar W, et al. Predictors of bone mineral density in patients on hemodialysis. Transplant Proc. 2004;36(5):1297-1301. doi: https://doi.org/10.1016/j.transproceed.2004.05.069

23. Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with endstage renal disease. Kidney Int. 2000;58(1):396-399. doi: https://doi.org/10.1046/j.1523-1755.2000.00178.x

24. Coco M, Rush H. Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis. 2000;36(6):1115-1121. doi: https://doi.org/10.1053/ajkd.2000.19812

25. Fried LF, Biggs ML, Shlipak MG, et al. Association of Kidney Function with Incident Hip Fracture in Older Adults. J Am Soc Nephrol. 2007;18(1):282-286. doi: https://doi.org/10.1681/ASN.2006050546

26. McNerny EMB, Nickolas TL. Bone Quality in Chronic Kidney Disease: Definitions and Diagnostics. Curr Osteoporos Rep. 2017;15(3):207-213. doi: https://doi.org/10.1007/s11914-017-0366-z

27. Denburg MR, Kumar J, Jemielita T, et al. Fracture Burden and Risk Factors in Childhood CKD: Results from the CKiD Cohort Study. J Am Soc Nephrol. 2016;27(2):543-550. doi: https://doi.org/10.1681/ASN.2015020152

28. McCloskey E V., Odén A, Harvey NC, et al. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. J Bone Miner Res. 2016;31(5):940-948. doi: https://doi.org/10.1002/jbmr.2734

29. Yong-man L, Hui-wen X, Kuo-huan L. The effects of calciumregulating-hormone on BMC in patients with CRF. J Tongji Med Univ. 1995;15(2):95-97. doi: https://doi.org/10.1007/BF02887910

30. Sampaio Lacativa PG, Carvalho de Mendonça LM, de Mattos Patrício Filho PJ, et al. Risk Factors for Decreased Total Body and Regional Bone Mineral Density in Hemodialysis Patients With Severe Secondary Hyperparathyroidism. J Clin Densitom. 2005;8(3):352-361. doi: https://doi.org/10.1385/JCD:8:3:352

31. Miller M, Chin J, Miller S, Fox J. Disparate effects of mild, moderate, and severe secondary hyperparathyroidism on cancellous and cortical bone in rats with chronic renal insufficiency. Bone. 1998;23(3):257-266. doi: https://doi.org/10.1016/S8756-3282(98)00098-2

32. Karlovich NV, Mokhort TV. Secondary hyperparathyroidism in chronic kidney disease (monography). Minsk; 2021. 177 p. (In Russ.).

33. Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498-1513. doi: https://doi.org/10.1038/s41430-020-0558-y

34. Bover J, Cozzolino M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: new insights into vitamin D receptor activation. Kidney Int Suppl. 2011;1(4):122-129. doi: https://doi.org/10.1038/kisup.2011.28

35. Karlovich NV, Sazonava EG, Valovik OE, et al. Experience of colecalciferol use for the correction of vitamin D deficiency and secondary hyperparathyroidism in patients with chronic kidney disease. Lechebnoe delo. 2019;4(68): 4-40. (In Russ.).

36. Williams S., Malatesta K., Norris K. Vitamin D and chronic kidney disease. Ethn Dis. 2009;19(4 Suppl 5): S5-8-11.

37. Cunningham J, Sprague SM, Cannata-Andia J, et al. Osteoporosis Work Group. Osteoporosis in chronic kidney disease. Am J Kidney Dis. 2004;43(3):566-571. doi: https://doi.org/10.1053/j.ajkd.2003.12.004

38. Kraut J.A., Madias N.E. Lactic acidosis. N Engl J Med. 2015;372(11):1078-1079. doi: https://doi.org/10.1056/NEJMc1500327

39. Tao L, Xu H, Sun M, Ikeda T. Investigation of the bone mineral density in hemodialysis patients for different terms. Hunan Yi Ke Da Xue Xue Bao. 1999;24(2):177-178.

40. Carrero JJ, Qureshi AR, Nakashima A, et al. Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant. 2011;26(1):184-190. doi: https://doi.org/10.1093/ndt/gfq397

41. Albrand G, Munoz F, Sornay-Rendu E, et al. Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: The OFELY Study. Bone. 2003;32(1):78-85. doi: https://doi.org/10.1016/S8756-3282(02)00919-5

42. Albaaj F, Sivalingham M, Haynes P, et al. Prevalence of hypogonadism in male patients with renal failure. Postgrad Med J. 2006;82(972):693-696. doi: https://doi.org/10.1136/pgmj.2006.045963

43. Weisinger JR, Gonzalez L, Alvarez H, et al. Role of persistent amenorrhea in bone mineral metabolism of young hemodialyzed women. Kidney Int. 2000;58(1):331-335. doi: https://doi.org/10.1046/j.1523-1755.2000.00170.x

44. Nickolas TL, Cremers S, Zhang A, et al. Discriminants of Prevalent Fractures in Chronic Kidney Disease. J Am Soc Nephrol. 2011;22(8):1560-1572. doi: https://doi.org/10.1681/ASN.2010121275

45. West SL, Jamal SA, Lok CE. Tests of neuromuscular function are associated with fractures in patients with chronic kidney disease. Nephrol Dial Transplant. 2012;27(6):2384-2388. doi: https://doi.org/10.1093/ndt/gfr620

46. Fahal IH. Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant. 2014;29(9):1655-1665. doi: https://doi.org/10.1093/ndt/gft070

47. Jamal SA, West SL, Nickolas TL. The clinical utility of FRAX to discriminate fracture status in men and women with chronic kidney disease. Osteoporos Int. 2014;25(1):71-76. doi: https://doi.org/10.1007/s00198-013-2524-1

48. Kanis JA, McCloskey EV, Harvey NC, et al. Intervention Thresholds and the Diagnosis of Osteoporosis. J Bone Miner Res. 2015;30(10):1747-1753. doi: https://doi.org/10.1002/jbmr.2531

49. Lorentzon M, Branco J, Brandi ML, et al. Algorithm for the Use of Biochemical Markers of Bone Turnover in the Diagnosis, Assessment and Follow-Up of Treatment for Osteoporosis. Adv Ther. 2019;36(10):2811-2824. doi: https://doi.org/10.1007/s12325-019-01063-9

50. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42 (4S3):S1-201

51. DeVita MV, Rasenas LL, Bansal M, et al. Assessment of renal osteodystrophy in hemodialysis patients. Medicine (Baltimore). 1992;71(5):284-290. doi: https://doi.org/10.1097/00005792-199209000-00003

52. Baszko-Blaszyk D, Grzegorzewska AE, Horst-Sikorska W, Sowinski J. Bone mass in chronic renal insufficiency patients treated with continuous ambulatory peritoneal dialysis. Adv Perit Dial. 2001;17:109-113

53. Bakr AM. Bone mineral density and bone turnover markers in children with chronic renal failure. Pediatr Nephrol. 2004;19(12):1390-1393. doi: https://doi.org/10.1007/s00467-004-1670-2

54. Salem N, Bakr A. Size-adjustment techniques of lumbar spine dual energy X-ray absorptiometry measurements in assessing bone mineralization in children on maintenance hemodialysis. J Pediatr Endocrinol Metab. 2021;34(10):1291-1302. doi: https://doi.org/10.1515/jpem-2021-0081

55. Negri AL, Barone R, Quiroga MA, et al. Bone Mineral Density: Serum Markers of Bone Turnover and Their Relationships in Peritoneal Dialysis. Perit Dial Int J Int Soc Perit Dial. 2004;24(2):163-168. doi: https://doi.org/10.1177/089686080402400207

56. Yamaguchi T, Sugimoto T. Update on fracture risk in life style-related disease. Clin Calcium. 2014;24(3):349-355. doi: https://doi.org/CliCa1403349355

57. Naylor KL, Leslie WD, Hodsman AB, et al. FRAX Predicts Fracture Risk in Kidney Transplant Recipients. Transplantation. 2014;97(9):940-945. doi: https://doi.org/10.1097/01. TP.0000438200.84154.1a

58. Hounkpatin HO, Harris S, Fraser SDS, et al. Prevalence of chronic kidney disease in adults in England: comparison of nationally representative cross-sectional surveys from 2003 to 2016. BMJ Open. 2020;10(8):e038423. doi: https://doi.org/10.1136/bmjopen-2020-038423

59. Tartaglione L, Pasquali M, Rotondi S, et al. Positioning novel biologicals in CKD-mineral and bone disorders. J Nephrol. 2017;30(5):689-699. doi: https://doi.org/10.1007/s40620-017-0410-1

60. Nakashima A, Yorioka N, Mizutani T, et al. Serum Cross-Linked N-Terminal Telopeptide of Type I Collagen for Evaluation of Renal Osteodystrophy in Hemodialysis Patients. Nephron Clin Pract. 2005;99(3):78-85. doi: https://doi.org/10.1159/000083418

61. Ishimura E, Okuno S, Ichii M, et al. Relationship between serum sclerostin, bone metabolism markers, and bone mineral density in maintenance hemodialysis patients. J Clin Endocrinol Metab. 2014;99(11):4315-4320. doi: https://doi.org/10.1210/jc.2014-2372

62. Cejka D. Cardiovascular Safety of Anti-Sclerostin Therapy in Chronic Kidney Disease. Metabolites. 2021;11(11):770. doi: https://doi.org/10.3390/metabo11110770

63. Karlovich NV, Spiridonova OS, Sazonava EG, Mokhort TV. Determination of parathyroid hormone reference interval in patients with various stages of chronic kidney disease. Vesti of National Academy of Sciences of Belarus. Medical sciences. 2020;19(2):186-194. (In Russ.). doi: https://doi.org/10.29235/1814-6023-2021-18-2-186-195


Supplementary files

1. Рис. 1. Соотношение кортикальной и трабекулярной костной ткани в различных регионах скелета, используемых для оценки МПК [13].
Subject
Type Исследовательские инструменты
View (199KB)    
Indexing metadata ▾
2. Рис. 2. Частота переломов бедра в зависимости от возраста в общей популяции и у пациентов с различными стадиями ХБП [26].
Subject
Type Исследовательские инструменты
View (179KB)    
Indexing metadata ▾

Review

For citations:


Karlovich N.V., Mokhort T.V., Sazonava A.G. Bone pathology in chronic kidney disease. Osteoporosis and Bone Diseases. 2022;25(1):29-38. (In Russ.) https://doi.org/10.14341/osteo12943

Views: 8098


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)