Preview

Osteoporosis and Bone Diseases

Advanced search

Association of osteoporosis with ankle fractures in the geriatric population

https://doi.org/10.14341/osteo13129

Abstract

Ankle fractures are common in older people. However, their association with osteoporosis remains controversial. This systematic review aims to determine the relationship between ankle fracture and bone mineral density (BMD). The article presents an overview of articles that have statistical data on the relationship of bone mineral density with the frequency of ankle fractures in the elderly. The aim of the review is to define ankle fracture associations in the geriatric population. Search was performed in PubMed, Medline, Scopus publications for articles in which a study of elderly patients with ankle fractures was conducted with an assessment of bone mineral density, followed by statistical processing with the presentation of the results. Ankle fractures in the geriatric population are due to generalized bone loss and changes in trabecular bone microarchitectonics, fragility, and therefore should be considered osteoporotic fractures, regardless of BMD. Correlation relationships were established with female sex, overweight, type 2 diabetes mellitus, arterial hypertension, which are characterized by a decrease in the trabecular structure. The FRAX fracture algorithm underestimates the likelihood of fractures in geriatric patients who have a high BMI and comorbid physical pathology, so it is necessary to focus on independent clinical risk factors for BMD in order to optimize fracture prevention.

About the Authors

R. Z. Nurlygaianov
State budgetary healthcare institution «City Clinical Hospital No. 21»
Russian Federation

Radik Z. Nurlygaianov.

3 Lesnoy proezd street, 450071 Ufa


Competing Interests:

None



T. B. Minasov
Federal State Budgetary Educational Institution of Higher Education of the Ministry of Health of the Russian Federation «Bashkir State Medical University»
Russian Federation

Timur B. Minasov - MD, PhD, Professor.

Ufa

Scopus Author ID: 17346255400


Competing Interests:

None



D. R. Nurlygaianova
Federal State Autonomous Educational Institution of Higher Education «Kazan (Volga Region) Federal University»
Russian Federation

Dinara R. Nurlygaianova.

Kazan


Competing Interests:

None



References

1. Kannus P, Palvanen M, Niemi S, et al. Stabilizing incidence of low-trauma ankle fractures in elderly people Finnish statistics in 1970-2006 and prediction for the future. Bone. 2008;43(2):340-342. doi: https://doi.org/10.1016/j.bone.2008.04.015

2. Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. 2006;37(8):691-697. doi: https://doi.org/10.1016/j.injury.2006.04.130

3. Juto H, Nilsson H, Morberg P. Epidemiology of adult ankle fractures: 1756 cases identified in Norrbotten County during 2009-2013 and classified according to AO/OTA. BMC Musculoskelet Disord. 2018;19(1):441. doi: https://doi.org/10.1186/s12891-018-2326-x

4. Hasselman CT, Vogt MT, Stone KL, et al. Foot and ankle fractures in elderly white women. J Bone Jt Surgery-American Vol. 2003;85(5):820-824. doi: https://doi.org/10.2106/00004623-200305000-00008

5. Valtola A, Honkanen R, Kröger H, et al.Lifestyle and other factors predict ankle fractures in perimenopausal women: a population-based prospective cohort study. Bone. 2002;30(1):238-242. doi: https://doi.org/10.1016/s8756-3282(01)00649-4

6. Lee DO, Kim JH, Yoo BC, Yoo JH. Is osteoporosis a risk factor for ankle fracture?: Comparison of bone mineral density between ankle fracture and control groups. Osteoporos Sarcopenia. 2017;3(4):192-194. doi: https://doi.org/10.1016/j.afos.2017.11.005

7. Biver E, Durosier C, Chevalley T, et al. Prior ankle fractures in postmenopausal women are associated with low areal bone mineral density and bone microstructure alterations. Osteoporos Int. 2015;26(8):2147-2155. doi: https://doi.org/10.1007/s00198-015-3119-9

8. Hans D, Šteňová E, Lamy O. The Trabecular Bone Score (TBS) Complements DXA and the FRAX as a fracture risk assessment tool in routine clinical practice. Curr Osteoporos Rep. 2017;15(6):521-531. doi: https://doi.org/10.1007/s11914-017-0410-z

9. Wang C, Liu J, Xiao L, et al. Comparison of FRAX in postmenopausal Asian women with and without type 2 diabetes mellitus: a retrospective observational study. J Int Med Res. 2020;48(2):030006051987959. doi: https://doi.org/10.1177/0300060519879591

10. Viégas M, Costa C, Lopes A, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complications. 2011;25(4):216-221. doi: https://doi.org/10.1016/j.jdiacomp.2011.02.004

11. Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes [Erratum in: J Bone Miner Res. 2017;32(11):2319. doi: https://doi.org/10.1002/jbmr.55613] J Bone Miner Res. 2012;27(2):301-308. doi: https://doi.org/10.1002/jbmr.556

12. Johansson H, Azizieh F, Al Ali N, et al. FRAX - vs. T-score-based intervention thresholds for osteoporosis. Osteoporos Int. 2017;28(11):3099-3105. doi: https://doi.org/10.1007/s00198-017-4160-7

13. McCloskey EV, Odén A, Harvey NC, et al. A Meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2016;31(5):940-948. doi: https://doi.org/10.1002/jbmr.2734

14. Seeley DG, Kelsey J, Jergas M, Nevitt MC. Predictors of ankle and foot fractures in older women. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1996;11(9):1347-1355. doi: https://doi.org/10.1002/jbmr.5650110920

15. Lee SH, Dargent-Molina P, Bréart G. Risk factors for fractures of the proximal humerus: results from the EPIDOS prospective study. J Bone Miner Res. 2002;17(5):817-825. doi: https://doi.org/10.1359/jbmr.2002.17.5.817

16. Lee D-O, Kim J-H, Yoo B-C, Yoo J-H. Is osteoporosis a risk factor for ankle fracture?: Comparison of bone mineral density between ankle fracture and control groups. Osteoporos Sarcopenia. 2017;3(4):192-194. doi: https://doi.org/10.1016/j.afos.2017.11.005

17. Gauthé R, Desseaux A, Rony L, et al. Ankle fractures in the elderly: Treatment and results in 477 patients. Orthop Traumatol Surg Res. 2016;102(4):S241-S244. doi: https://doi.org/10.1016/j.otsr.2016.03.001

18. So E, Rushing CJ, Simon JE, et al. Association between bone mineral density and elderly ankle fractures: A systematic review and meta-analysis. J Foot Ankle Surg. 2020;59(5):1049-1057. doi: https://doi.org/10.1053/j.jfas.2020.03.012

19. Prior-Español Ά, Rodríguez-Muguruza S, Florido A, et al. THU0466 osteoporosis-related ankle fracture: Should we consider it? Ann Rheum Dis. 2016;75(S2):361. doi: https://doi.org/10.1136/annrheumdis-2016-eular.2068

20. Dobrovol’skaya OV, Demin NV, Toroptsova NV. Sostoyanie mineral’noy plotnosti kostnoy tkani u zhenshchin, perenesshikh malotravmatichnye perelomy v vozraste 50 let i starshe. Osteoporosis and Bone Diseases. 2012;15(2):9-12. (In Russ.) doi: https://doi.org/10.14341/osteo201229-12

21. Robinson CM, Royds M, Abraham A, et al. Refractures in patients at least forty-five years old. a prospective analysis of twenty-two thousand and sixty patients. J Bone Joint Surg Am. 2002;84(9):1528-1533. doi: https://doi.org/10.2106/00004623-200209000-00004

22. Rydberg EM, Wennergren D, Stigevall C, et al. Epidemiology of more than 50,000 ankle fractures in the Swedish Fracture Register during a period of 10 years. J Orthop Surg Res. 2023;18(1):79. doi: https://doi.org/10.1186/s13018-023-03558-2

23. Ingle BM, Eastell R. Site-specific bone measurements in patients with ankle fracture. Osteoporos Int. 2002;13(4):342-347. doi: https://doi.org/10.1007/s001980200036

24. Stein EM, Liu XS, Nickolas TL, et al. Abnormal microarchitecture and stiffness in postmenopausal women with ankle fractures. J Clin Endocrinol Metab. 2011;96(7):2041-2048. doi: https://doi.org/10.1210/jc.2011-0309

25. Langsetmo L, Peters KW, Burghardt AJ, et al. Volumetric bone mineral density and failure load of distal limbs predict incident clinical fracture independent of FRAX and clinical risk factors among older men. J Bone Miner Res. 2018;33(7):1302-1311. doi: https://doi.org/10.1002/jbmr.3433

26. Ohlsson C, Sundh D, Wallerek A, et al. Cortical bone area predicts incident fractures independently of areal bone mineral density in older men. J Clin Endocrinol Metab. 2017;102(2):516-524. doi: https://doi.org/10.1210/jc.2016-3177

27. Søgaard AJ, Holvik K, Omsland TK, et al. Age and sex differences in body mass index as a predictor of hip fracture: A NOREPOS study. Am J Epidemiol. 2016;184(7):510-519. doi: https://doi.org/10.1093/aje/kww011

28. De Laet C, Kanis JA, Odén A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330-1338. doi: https://doi.org/10.1007/s00198-005-1863-y

29. Zhao LJ, Jiang H, Papasian CJ, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23(1):17-29. doi: https://doi.org/10.1359/jbmr.070813

30. Compston JE, Watts NB, Chapurlat R, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124(11):1043-1050. doi: https://doi.org/10.1016/j.amjmed.2011.06.013

31. Chuang T-L, Chuang M-H, Wang Y-F, Koo M. Comparison of Trabecular Bone Score–Adjusted Fracture Risk Assessment (TBS-FRAX) and FRAX Tools for Identification of High Fracture Risk among Taiwanese Adults Aged 50 to 90 Years with or without Prediabetes and Diabetes. Medicina (B Aires). 2022;58(12):1766. doi: https://doi.org/10.3390/medicina58121766

32. Schwartz A V. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184. doi: https://doi.org/10.1001/jama.2011.715

33. Poiana C. Osteoporosis and fracture risk in patients with type 2 diabetes mellitus. Acta Endocrinol. 2019;15(2):231-236. doi: https://doi.org/10.4183/aeb.2019.231

34. EL-Bikai R, Tahir MR, Tremblay J, et al. Association of age-dependent height and bone mineral density decline with increased arterial stiffness and rate of fractures in hypertensive individuals. J Hypertens. 2015;33(4):727-735. doi: https://doi.org/10.1097/HJH.0000000000000475

35. He B, Yin L, Zhang M, et al. Causal Effect of blood pressure on bone mineral density and fracture: A Mendelian randomization study. Front Endocrinol (Lausanne). 2021;(12). doi: https://doi.org/10.3389/fendo.2021.716681


Review

For citations:


Nurlygaianov R.Z., Minasov T.B., Nurlygaianova D.R. Association of osteoporosis with ankle fractures in the geriatric population. Osteoporosis and Bone Diseases. 2023;26(2):4-9. (In Russ.) https://doi.org/10.14341/osteo13129

Views: 1078


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)