Preview

Osteoporosis and Bone Diseases

Advanced search

The changes of standard DXA measurements and TBS depending on outcomes of neurosurgical treatment in patients with Cushing's disease

Abstract

BACKGROUND: Patients with endogenous hypercortisolism have reduced bone mineral density (BMD) and trabecular bone score (TBS) that are the causes of secondary osteoporosis and low-traumatic fractures. It is well known that radical treatment (neurosurgery or radiosurgery) of Cushing’s disease leads to a decline of cortisol levels in all body fluids to normal values. However, it is still uncertain whether bone tissue structure, and particularly its microarchitecture, does recover in remission of the disease.


AIMS: To evaluate an influence of hormone activity (presence or absence of remission) in patients with Cushing's disease on changes of bone structure measurements in accordance with DXA values (TBS, BMD, T- and Z-scores), as well as significance of such changes in 12 and 24 months after neurosurgical treatment.


MATERIALS AND METHODSIn patients with confirmed active Cushing's disease (ACTH-producing pituitary adenoma) (n = 44) and in control group of healthy volunteers (n = 40), BMD in lumbar spine (L1-L4) and simultaneously TBS, in cut-off points before neurosurgical treatment (in both groups) and in 12 and 24 months after it (only in patients), were assessed. We diagnosed presence or absence of disease remission at cut-offs. All measurements were performed using a GE iDXA device (GE Healthcare Lunar, Madison, Wisconsin, USA). The TBS was calculated simultaneously from taken BMD scans, blinded to clinical outcome using TBS iNsight software v2.1 (Medimaps, Merignac, France). The activity of Cushing’s disease was evaluated using late-night salivary cortisol (LNSC, at 23:00). To determine the differences in DXA and TBS values before and after neurosurgical intervention depending on remission occurrence, covariate analysis (ANCOVA) was applied.


RESULTSThere were found significant changes in TBS, BMD and T-score values in 12 months after neurosurgical treatment associated with presence or absence of disease remission (p = 0.039, 0.046 and 0.048, respectively). No differences in Z-score as well as in all measurements in 24 months, that might be associated with remission occurrence, were revealed. The gain in all DXA measurements (including TBS) during 24 months of observation period was statistically significant when analyzing data using Student’s paired t-test. However, the values corresponding to the age references had not been achieved for the specified time interval.


CONCLUSIONS: Patients with Cushing’s disease have lower TBS values. In remission conditions TBS is getting significantly higher. The increase in BMD and TBS occurs during 24 months after achieving remission of Cushing’s disease but doesn’t lead to a full restoration of normal bone mass and microstructure throughout observation period of 24 months.

About the Authors

Timur T. Tsoriev

 Endocrinology Research Centre


Russian Federation

MD, Research Scientist, Institute for Clinical Endocrinology, Department of Neuroendocrinology and Bone Diseases


 



Zhanna E. Belaya

Endocrinology Research Centre


Russian Federation

MD, PhD, Principle Research Scientist, Head of Department of Neuroendocrinology and Bone Diseases, Institute for Clinical Endocrinology



Tatiana O. Chernova

Endocrinology Research Centre


Russian Federation

MD, PhD, Leading Research Scientist, Department of Radiology and X-ray diagnostics



Natalia I. Sazonova

Endocrinology Research Centre


Russian Federation

MD, PhD, Department of Radiology and X-ray diagnostics



Didier Hans

Lausanne University Hospital, Bone and Joint Department - Center of Bone Diseases


Switzerland

MD, PhD, Associated Professor, Head of Research & Development in Bone and Body Composition Imaging, Center of Bone Diseases - Bone and Joint Department



Alexander G. Solodovnikov

"Worldwide Clinical Trials" Ltd.


Russian Federation

MD, PhD, Head of Department



Galina A. Mel'nichenko

Endocrinology Research Centre


Russian Federation

MD, PhD, Professor, Academician of the RAS, Director of Institute for Clinical Endocrinology



Ivan I. Dedov

Endocrinology Research Centre; I.M.Sechenov First Moscow State Medical Unoversity (Sechenov University)


Russian Federation

MD, PhD, Professor, Academician of the RAS, President of Endocrinology Research Centre



References

1. Дедов И.И., Рожинская Л.Я., Марова Е.И. Первичный и вторичный остеопороз: патогенез, диагностика, принципы профилактики и лечения. Методическое пособие для врачей. – М.: Медицина, 2002. [Dedov II, Rozhinskaya LY, Marova EI. Pervichnyy i vtorichnyy osteoporoz: patogenez, diagnostika, printsipy profilaktiki i lecheniya. Metodicheskoye posobiye dlya vrachey.Moscow: Meditsina; 2002. (In Russ.)]

2. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., и др. Возможности маркера костного обмена – остеокальцина – для диагностики эндогенного гиперкортицизма и вторичного остеопороза. // Остеопороз и остеопатии. – 2011. – Т. 14. – №2. – С. 7–10. [Belaya ZE, Rozhinskaya LY, Mel’nichenko GA, et al. Vozmozhnosti markera kostnogo obmena – osteokal’tsina – dlya diagnostiki endogennogo giperkortitsizma i vtorichnogo osteoporoza. Osteoporosis and bone diseases. 2011;14(2):7–10. (In Russ.)] doi: https://doi.org/10.14341/osteo201127-10

3. Драгунова Н.В., Белая Ж.Е., Рожинская Л.Я. Состояние костно-мышечной системы при эндогенном гиперкортицизме. // Остеопороз и остеопатии. – 2012. – Т. 15. – №3. – С. 18–24. [Dragunova NV, Belaya ZE, Rozhinskaya LY. Sostoyaniye kostno-myshechnoy sistemy pri endogennom giperkortitsizme. Osteoporosis and bone diseases. 2012;15(3):18–24. (In Russ.)] doi: https://doi.org/10.14341/osteo2012318-24

4. Белая Ж.Е., Драгунова Н.В., Рожинская Л.Я., и др. Низкотравматичные переломы у пациентов с эндогенным гиперкортицизмом. Предикторы и факторы риска, влияние на качество жизни. // Остеопороз и остеопатии. – 2013. – Т. 16. – №1. – С. 7–13. [Belaya ZE, Dragunova NV, Rozhinskaya LY, et al. Low-Traumatic Fractures in Patients with Endogenous Hypercortisolism. Predictors and Risk Factors, the Impact on Quality of Life. Osteoporosis and Bone Diseases. 2013;16(1):7-13. (In Russ.)] doi: https://doi.org/10.14341/osteo201317-13

5. Баранова И.А., Торопцова Н.В., Лесняк О.М. Основные положения клинических рекомендаций «Диагностика, профилактика и лечение глюкокортикоидного остеопороза у мужчин и женщин 18 лет и старше». // Остеопороз и остеопатии. – 2014. – Т. 17. – №3. – С. 34–37. [Baranova IA, Toroptsova NV, Lesnyak OM. The Main Provisions of the Guidelines «Diagnosis, Prevention and Treatment of Glucocorticoid Osteoporosis in Men and Women 18 Years and Older». Osteoporosis and Bone Diseases. 2014;17(3):34-37. (In Russ.)] doi: https://doi.org/10.14341/osteo2014334-37

6. Lekamwasam S, Adachi JD, Agnusdei D, et al; Joint IOF-ECTS GIO Guidelines Working Group. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int. 2012;23(9):2257–2276. doi: https://doi.org/10.1007/s00198-012-1958-1

7. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.

8. Eller-Vainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012;27(10):2223–2230. doi: https://doi.org/10.1002/jbmr.1648

9. Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int. 2016;27(1):39–48. doi: https://doi.org/10.1007/s00198-015-3211-1

10. Harvey NC, Glüer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–224. doi: https://doi.org/10.1016/j.bone.2015.05.016

11. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–530. doi: https://doi.org/10.1002/jbmr.2176

12. Colson F, Picard A, Rabier B, et al. Trabecular bone microarchitecture alteration in glucocorticoids treated women in clinical routine? A TBS evaluation [abstract]. J Bone Miner Res. 2009;24 Suppl 1:S129.

13. Kalpakcioglu BB, Engelke K, Genant HK. Advanced imaging assessment of bone fragility in glucocorticoid-induced osteoporosis. Bone. 2011;48(6):1221–1231. doi: https://doi.org/10.1016/j.bone.2011.02.005

14. Petranova T, Sheytanov I, Monov S, et al. Denosumab improves bone mineral density and microarchitecture and reduces bone pain in women with osteoporosis with and without glucocorticoid treatment. Biotechnol Biotechnol Equip. 2014;28(6):1127–1137. doi: https://doi.org/10.1080/13102818.2014.967827

15. Chang G, Rajapakse CS, Regatte RR, et al. 3 Tesla MRI detects deterioration in proximal femur microarchitecture and strength in long-term glucocorticoid users compared with controls. J Magn Reson Imaging. 2015;42(6):1489–1496. doi: https://doi.org/10.1002/jmri.24927

16. Chuang MH, Chuang TL, Koo M, et al. Trabecular bone score reflects trabecular microarchitecture deterioration and fragility fracture in female adult patients receiving glucocorticoid therapy: a pre-post controlled study. Biomed Res Int. 2017;2017:4210217. doi: https://doi.org/10.1155/2017/4210217

17. Борисова Е.О. Клиническая фармакология парентеральных форм глюкокортикостероидов. // Лечебное дело. – 2007. – №3. – С. 17–24. [Borisova EO. Klinicheskaya farmakologiya parenteral’nykh form glyukokortikosteroidov. Lechebnoye delo. 2007;(3):17–24. (In Russ.)]

18. van der Goes MC, Jacobs JW, Bijlsma JW. The value of glucocorticoid co-therapy in different rheumatic diseases – positive and adverse effects. Arthritis Res Ther. 2014;16 Suppl 2:S2. doi: https://doi.org/10.1186/ar4686

19. Blavnsfeldt AG, de Thurah A, Thomsen MD, et al. The effect of glucocorticoids on bone mineral density in patients with rheumatoid arthritis: A systematic review and meta-analysis of randomized, controlled trials. Bone. 2018;114:172–180. doi: https://doi.org/10.1016/j.bone.2018.06.008

20. Tsujikawa T, Andoh A, Inatomi O, et al. Alendronate improves low bone mineral density induced by steroid therapy in Crohn's disease. Intern Med. 2009;48(12):933–937. doi: https://doi.org/10.2169/internalmedicine.48.2005

21. von Scheven E, Corbin KJ, Stagi S, et al. Glucocorticoid-associated osteoporosis in chronic inflammatory diseases: epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep. 2014;12(3):289–299. doi: https://doi.org/10.1007/s11914-014-0228-x

22. Nadesalingam K, Kirby D. Bone protection in chronic obstructive pulmonary disease (COPD) patients requiring regular intermittent glucocorticoid therapy. Clin Med (Lond). 2013;13(2):216. doi: https://doi.org/10.7861/clinmedicine.13-2-216

23. Dam TT, Harrison S, Fink HA, et al.; Osteoporotic Fractures in Men (MrOS) Research Group. Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma. Osteoporos Int. 2010;21(8):1341–1349. doi: https://doi.org/10.1007/s00198-009-1076-x

24. Kulak CA, Borba VZ, Kulak J Jr, et al. Osteoporosis after transplantation. Curr Osteoporos Rep. 2012;10(1):48–55. doi: https://doi.org/10.1007/s11914-011-0083-y

25. Blaslov K, Katalinic L, Kes P, et al. What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy? Int Urol Nephrol. 2014;46(5):1019–1024. doi: https://doi.org/10.1007/s11255-013-0596-7

26. Fan C, Foster BK, Wallace WH, et al. Pathobiology and prevention of cancer chemotherapy-induced bone growth arrest, bone loss, and osteonecrosis. Curr Mol Med. 2011;11(2):140–151. doi: https://doi.org/10.2174/156652411794859223

27. Belaya ZE, Hans D, Rozhinskaya LY, et al. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing's syndrome. Arch Osteoporos. 2015;10:44. doi: https://doi.org/10.1007/s11657-015-0244-1

28. Белая Ж.Е., Ильин А.В., Мельниченко Г.А., и др. Автоматизированный электрохемилюминесцентный метод определения кортизола в слюне для диагностики эндогенного гиперкортицизма среди пациентов с ожирением. // Ожирение и метаболизм. – 2011. – Т. 8. – №2. – С. 56–63. [Belaya ZE, Ilyin AV, Mel’nichenko GA, et al. Avtomatizirovannyy elektrokhemilyuminestsentnyy metod opredeleniya kortizola v slyune dlya diagnostiki endogennogo giperkortitsizma sredi patsientov s ozhireniyem. Obesity and Metabolism. 2011;8(2):56–63. (In Russ.)] doi: https://doi.org/10.14341/2071-8713-4954

29. Cormier C, Lamy O, Poriau S. TBS in routine clinial practice: proposals of use [Internet]. Plan-les-Outes, Switzerland: Medimaps Group; 2012. Available from: http://www.medimapsgroup.com/upload/MEDIMAPS-UK-WEB.pdf.

30. Tóth M, Grossman A. Glucocorticoid-induced osteoporosis: lessons from Cushing's syndrome. Clin Endocrinol (Oxf). 2013;79(1):1–11. doi: 10.1111/cen.12189.

31. Драгунова Н.В., Белая Ж.Е., Сазонова Н.И., и др. Исследование трабекулярного индекса кости как один из новых способов неинвазивной оценки микроархитектоники костной ткани у пациентов с эндогенным гиперкортицизмом. // Проблемы эндокринологии. – 2015. – Т. 61. – №4. – С. 9–16. [Dragunova NV, Belaya ZE, Sazonova NI, et al. Trabecular bone score as one of the new methods of non-invasive evaluation of bone microarchitecture in patients with Cushing’s syndrome. Problems of endocrinology. 2015;61(4):9–16. (In Russ.)] doi: https://doi.org/10.14341/probl20156149-16

32. Vinolas H, Grouthier V, Mehsen-Cetre N, et al. Assessment of vertebral microarchitecture in overt and mild Cushing's syndrome using trabecular bone score. Clin Endocrinol (Oxf). 2018. doi: https://doi.org/10.1111/cen.13743

33. Koumakis E, Winzenrieth R, Guignat L, et al. Cushing disease: gain in bone mineral density and also bone texture assessed by trabecular bone score after cure of Cushing disease [abstract]. J Bone Miner Res. 2014;29 Suppl 1:S349. Available from: http://www.asbmr.org/education/AbstractDetail?aid=6cc6b3bf-2a4c-4389-8757-5052f8a96de2.

34. Kim SY, Davydov O, Hans D, et al. Insights on accelerated skeletal repair in Cushing's disease. Bone Rep. 2015;2:32–35. doi: https://doi.org/10.1016/j.bonr.2015.03.001

35. Драгунова Н.В. Состояние костно-мышечной системы и возможности реабилитации пациентов с эндогенным гиперкортицизмом: Автореф. дисс. … канд. мед. наук. – М.; 2016. [Dragunova NV. Sostoyaniye kostno-myshechnoy sistemy i vozmozhnosti reabilitatsii patsientov s endogennym giperkortitsizmom [dissertation]. Moscow; 2016. (In Russ.)] Доступно по: https://www.endocrincentr.ru/sites/default/files/specialists/science/dissertation/2avtoreferat_dragunova_n_v_.pdf. Ссылка активна на 18.09.2018.


Supplementary files

1. Fig. 1. Changes in trabecular bone index and bone mineral density in patients with NIR after neurosurgical intervention
Subject
Type Исследовательские инструменты
View (76KB)    
Indexing metadata ▾

Review

For citations:


Tsoriev T.T., Belaya Zh.E., Chernova T.O., Sazonova N.I., Hans D., Solodovnikov A.G., Mel'nichenko G.A., Dedov I.I. The changes of standard DXA measurements and TBS depending on outcomes of neurosurgical treatment in patients with Cushing's disease. Osteoporosis and Bone Diseases. 2018;21(3):4-14. (In Russ.)

Views: 2053


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)