Preview

Osteoporosis and Bone Diseases

Advanced search

Sclerostin antibodies as novel anabolic therapy for osteoporosis

Abstract

Osteoporosis medications are divided into two groups: those inhibiting bone resorption and formation (bisphosphonates and denosumab), and those stimulating bone formation i.e. having an anabolic effect. The latter include teriparatide, parathyroid hormone 1-84 and abaloparatide, all of which stimulate bone resorption as well as bone formation, which limits their anabolic effect.


The discovery of sclerostin – the key inhibitor of bone formation – has led to development of the concept that inhibition of this protein could stimulate bone formation. Romosozumab is a human monoclonal antibody to sclerostin that binds to sclerostin and enables Wnt-signaling pathway ligands and their co-receptors to interact with each other, which, in turn, leads to increased bone formation and bone mineral density. Unlike classical anabolic drugs in osteoporosis treatment, romosozumab stimulates bone formation and inhibits bone resorption. In clinical trials, romosozumab showed marked increase in lumbar spine and hip bone mineral density. Presented article contains information about pre-clinical and clinical studies of romosozumab.

About the Authors

Elizaveta O. Mamedova

Endocrinology Research Centre


Russian Federation

MD, PhD



Tatiana A. Grebennikova

Endocrinology Research Centre


Russian Federation

MD, PhD



Zhanna E. Belaya

Endocrinology Research Centre


Russian Federation

MD, PhD



Liudmila Y. Rozhinskaya

Endocrinology Research Centre


Russian Federation

MD, PhD, professor



References

1. Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J. Mol. Endocrinol. 2019:R167-R185. doi:https://doi.org/10.1530/jme-18-0176

2. van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone. 2017;96:51-62. doi: https://doi.org/10.1016/j.bone.2016.10.010

3. Balemans W. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet.2002;39(2):91-97. doi: https://doi.org/10.1136/jmg.39.2.91

4. Brunkow ME, Gardner JC, Van Ness J, et al. Bone Dysplasia Sclerosteosis Results from Loss of the SOST Gene Product, a Novel Cystine Knot–Containing Protein. The American Journal of Human Genetics. 2001;68(3):577-589. doi: https://doi.org/10.1086/318811

5. Гребенникова Т.А., Белая Ж.Е., Солодовников А.Г. и др. Wnt10b и Wnt3a как биомаркеры изменений регуляции костного обмена у пациентов с болезнью Иценко-Кушинга // Вестник Российской академии медицинских наук. – 2018. – Т. 73. – № 2. – С. 115-121. [Grebennikova TA, Belaya ZE, Solodovnikov AG et al. Wnt10b and Wnt3a as biomarkers of changes in the regulation of bone metabolism in patients with Cushing’s Disease. Vestnik Rossijskoj akademii medicinskih nauk. 2018;73(2):115-121. (In Russ.)] doi: https://doi.org/10.15690/vramn904

6. Belaya ZE, Grebennikova TA, Melnichenko GA et al. Effects of endogenous hypercortisolism on bone mRNA and microRNA expression in humans. Osteoporosis International. 2018;29(1): 211-221. https://doi.org/10.1007/s00198-017-4241-7

7. Belaya ZE, Rozhinskaya LY, Melnichenko GA et al. Serum extracellular secreted antagonists of the canonical Wnt/β-catenin signaling pathway in patients with Cushing’s syndrome. Osteoporosis International. 2013;24:2191-2199. https://doi.org/10.1007/s00198-013-2268-y

8. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29-37.

9. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я. и др. Эпигенетические аспекты остеопороза. Вестник Российской академии медицинских наук. – 2015. – Т. 70. – №5. – С. 541–548. [Grebennikova TA, Belaya ZE, Rozhinskaya LYa et al. Epigenetic aspects of osteoporosis. Vestnik Rossijskoj akademii medicinskih nauk. 2015;70(5):541-548. (In Russ.)] doi: https://doi.org/10.15690/vramn.v70.i5.1440

10. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. Канонический сигнальный путь Wnt/β-катенин: от истории открытия до клинического применения. Терапевтический архив. – 2016. – Т. 88. – №10. – С. 74–81. [Grebennikova TA, Belaya ZE, Rozhinskaya LYa, Melnichenko GA. The canonical Wnt/β-catenin pathway: from the history of its discovery to clinical application. Terapevticheskij arhiv. 2016;88(10):74-81. (In Russ.)] doi: https://doi.org/10.17116/terarkh201688674-81

11. Ominsky MS, Boyce RW, Li X, Ke HZ. Effects of sclerostin antibodies in animal models of osteoporosis. Bone. 2017;96:63-75. doi: https://doi.org/10.1016/j.bone.2016.10.019

12. McClung MR. Romosozumab for the treatment of osteoporosis. Osteoporosis and Sarcopenia. 2018;4(1):11-15. doi: https://doi.org/10.1016/j.afos.2018.03.002

13. Li X, Ominsky MS, Niu Q-T, et al. Targeted Deletion of the Sclerostin Gene in Mice Results in Increased Bone Formation and Bone Strength. J. Bone Miner. Res. 2008;23(6):860-869. doi: https://doi.org/10.1359/jbmr.080216

14. Nioi P, Taylor S, Hu R, et al. Transcriptional Profiling of Laser Capture Microdissected Subpopulations of the Osteoblast Lineage Provides Insight Into the Early Response to Sclerostin Antibody in Rats. J. Bone Miner. Res. 2015;30(8):1457-1467. doi: https://doi.org/10.1002/jbmr.2482

15. Kim SW, Lu Y, Williams EA, et al. Sclerostin Antibody Administration Converts Bone Lining Cells Into Active Osteoblasts. J. Bone Miner. Res. 2017;32(5):892-901. doi: https://doi.org/10.1002/jbmr.3038

16. Ominsky MS, Niu Q-T, Li C, et al. Tissue-Level Mechanisms Responsible for the Increase in Bone Formation and Bone Volume by Sclerostin Antibody. J. Bone Miner. Res. 2014;29(6):1424-1430. doi: https://doi.org/10.1002/jbmr.2152

17. Ominsky MS, Vlasseros F, Jolette J, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res. 2010;25(5):948-959. doi: https://doi.org/10.1002/jbmr.14

18. Ominsky MS, Samadfam R, Jolette J et al. Long-term sclerostin antibody treatment in cynomolgus monkeys: sustained in vertebral microarchitecture and bone strength following a temporal increase in cancellous bone formation [abstract]. J Bone Miner Res. 2012;27 (Suppl 1). doi: https://doi.org/10.1002/jbmr.1852

19. Li X, Ominsky MS, Warmington KS, et al. Sclerostin Antibody Treatment Increases Bone Formation, Bone Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis. J. Bone Miner. Res. 2009;24(4):578-588. doi: https://doi.org/10.1359/jbmr.081206

20. Li X, Ominsky MS, Warmington KS, et al. Increased Bone Formation and Bone Mass Induced by Sclerostin Antibody Is Not Affected by Pretreatment or Cotreatment with Alendronate in Osteopenic, Ovariectomized Rats. Endocrinology. 2011;152(9):3312-3322. doi: https://doi.org/10.1210/en.2011-0252

21. Halleux C, Hu S, Diefenbach B et al. Infrequent co-treatment and sequential treatment of anti-sclerostin antibody with zoledronic acid restores and maintains bone mass in murine osteoporosis models. J Bone Miner Res. 2009;24 (Suppl 1). doi: https://doi.org/10.1002/jbmr.5650241301

22. Padhi D, Allison M, Kivitz AJ, et al. Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: A randomized, double-blind, placebo-controlled study. The Journal of Clinical Pharmacology. 2014;54(2):168-178. doi: https://doi.org/10.1002/jcph.239

23. Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 2011;26(1):19-26. doi: https://doi.org/10.1002/jbmr.173

24. Graeff C, Campbell GM, Peña J, et al. Administration of romosozumab improves vertebral trabecular and cortical bone as assessed with quantitative computed tomography and finite element analysis. Bone. 2015;81:364-369. doi: https://doi.org/10.1016/j.bone.2015.07.036

25. McClung MR, Grauer A, Boonen S, et al. Romosozumab in Postmenopausal Women with Low Bone Mineral Density. N. Engl. J. Med.2014;370(5):412-420. doi: https://doi.org/10.1056/NEJMoa1305224

26. Recknor CP, Recker RR, Benson CT, et al. The Effect of Discontinuing Treatment With Blosozumab: Follow-up Results of a Phase 2 Randomized Clinical Trial in Postmenopausal Women With Low Bone Mineral Density. J. Bone Miner. Res. 2015;30(9):1717-1725. doi: https://doi.org/10.1002/jbmr.2489

27. Bone HG, Bolognese MA, Yuen CK, et al. Effects of Denosumab Treatment and Discontinuation on Bone Mineral Density and Bone Turnover Markers in Postmenopausal Women with Low Bone Mass. J. Clin. Endocr. Metab. 2011;96(4):972-980. doi: https://doi.org/10.1210/jc.2010-1502

28. Cummings SR, Ferrari S, Eastell R, et al. Vertebral Fractures After Discontinuation of Denosumab: A Post Hoc Analysis of the Randomized Placebo-Controlled FREEDOM Trial and Its Extension. J. Bone Miner. Res. 2018;33(2):190-198. doi: https://doi.org/10.1002/jbmr.3337

29. Heiss G. Health Risks and Benefits 3 Years After Stopping Randomized Treatment With Estrogen and Progestin. JAMA. 2008;299(9):1036. doi: https://doi.org/10.1001/jama.299.9.1036

30. Wasnich RD, Bagger YZ, Hosking DJ et al. Changes in bone density and turnover after alendronate or estrogen withdrawal. Menopause. 2004;11(6 Pt 1):622–630.

31. Binkley N, Krueger D, de Papp AE. Multiple vertebral fractures following osteoporosis treatment discontinuation: a case-report after long-term Odanacatib. Osteoporos. Int. 2018;29(4):999-1002. doi: https://doi.org/10.1007/s00198-018-4385-0

32. Papapoulos S, Lippuner K, Roux C, et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos. Int. 2015;26(12):2773-2783. doi: https://doi.org/10.1007/s00198-015-3234-7

33. Leder BZ, Tsai JN, Uihlein AV, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. The Lancet. 2015;386(9999):1147-1155. doi: https://doi.org/10.1016/s0140-6736(15)61120-5

34. Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med.2016;375(16):1532-1543. https://doi.org/10.1056/NEJMoa1607948

35. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017;377(15):1417-1427. doi: https://doi.org/10.1056/NEJMoa1708322

36. Langdahl BL, Libanati C, Crittenden DB, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. The Lancet. 2017;390(10102):1585-1594. doi: https://doi.org/10.1016/s0140-6736(17)31613-6

37. Lewiecki EM, Blicharski T, Goemaere S, et al. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men With Osteoporosis. J. Clin. Endocr. Metab. 2018;103(9):3183-3193. doi: https://doi.org/10.1210/jc.2017-02163

38. Chouinard L, Felx M, Mellal N, et al. Carcinogenicity risk assessment of romosozumab: A review of scientific weight-of-evidence and findings in a rat lifetime pharmacology study. Regul. Toxicol. Pharm. 2016;81:212-222. doi: https://doi.org/10.1016/j.yrtph.2016.08.010

39. Lyles KW, Colón-Emeric CS, Magaziner JS et al. HORIZON Recurrent Fracture Trial. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799-809. https://doi.org/10.1056/NEJMoa074941

40. Kranenburg G, Bartstra JW, Weijmans M et al. Bisphosphonates for cardiovascular risk reduction: A systematic review and meta-analysis. Atherosclerosis. 2016;252:106-115. https://doi.org/10.1016/j.atherosclerosis.2016.06.039

41. Kim DH, Rogers JR, Fulchino LA et al. Bisphosphonates and risk of cardiovascular events: a meta-analysis. PLoS One. 2015;10(4):e0122646. https://doi.org/10.1371/journal.pone.0122646


Supplementary files

1. Fig. 1. The role and mechanisms of regulation of sclerostin in bone tissue.
Subject
Type Исследовательские инструменты
View (372KB)    
Indexing metadata ▾

Review

For citations:


Mamedova E.O., Grebennikova T.A., Belaya Zh.E., Rozhinskaya L.Y. Sclerostin antibodies as novel anabolic therapy for osteoporosis. Osteoporosis and Bone Diseases. 2018;21(3):21-29. (In Russ.)

Views: 2424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)