Preview

Osteoporosis and Bone Diseases

Advanced search

FRACTURE — A RISK FACTOR FOR DEVELOPMENT AND PROGRESSION OF OSTEOPENIA AND OSTEOPOROSIS

Abstract

Analyzed literature data demonstrates the influence of fracture in individuals of different age on the risk of post-traumatic osteopenia and osteoporosis, as well as increase in the risk of the recurrent fractures. It is proved that the fracture leads to a decrease in bone mineral density (BMD) not only in the injured limb, but also other parts of the skeleton. In majority of prospective studies and metaanalysis it was shown that there is no full recovery of BMD after sustained fracture. Posttraumatic osteopenia and osteoporosis increase the risk of re-fracture in the future.

About the Author

E A Pobel



References

1. Гребенюк А.М., Ивашутин Д. А. Посттравматический остеопороз (рефлекторная дистрофия, синдром Зудека) // Травма. — 2010. — Т. 11, №1. — С. 66—68.

2. Корж Н.А., Дедух Н.В. Репаративная регенерация кости. Современный взгляд на проблему: стадии регенерации // Ортопедия, травматология и протезирование. — 2006. — № 1. — С.77—84.

3. Лесняк О.М., Л. Норой, Аудит состояния проблемы остеопороза в странах Восточной Европы и Центральной Азии 2010-2011 International Osteoporosis Foundation [Электронный ресурс]. — Режим доступа: www.iofbonehealth.org/../Audit%20Eastern%2

4. Мелтон Л.Дж. (Melton L.J.III) Эпидемиология переломов — Спб.: ЗАО "Издательство БИНОМ", "Невский диалект", 2000.

5. Побел Е.А. Результаты лечения пациентов с диафизарными переломами длинных костей конечностей (ретроспективный анализ) // Ортопедия, травматология и протезирование. — 2012. — № 4. — С. 90—93.

6. Свешников А.А. Минеральная плотность костей скелета после травм и уравнивания длины конечностей // Основные закономерности изменения минеральной плотности костей скелета после травм и уравнивания длины конечностей методом чрескостного остеосинтеза [Электронный ресурс]. — 2012. — Режим доступа:http:// www.rae.ru/monographs/170

7. Свешников А.А., Бегимбетова Н.Б., Дудич С.Е. Минеральная плотность костей скелета после травм и при удлинении конечностей в условиях нормального и нарушенного менструального цикла // Гений Ортопедии — 2006. — № 1. — C. 75—80.

8. Свешников А.А., Карасев А.Г., Смотрова Л. А., Овчинников Е.Н. Минеральная плотность костей скелета при множественных переломах костей нижних конечностей // Гений Ортопедии. — 2006. — № 1. — C. 98 — 102.

9. Свешников А.А., Смотрова Л.А. Посттравматическая остепения // Гений ортопедии. — 2001. — №1. — С. 99 — 104.

10. Andersson S.M., Nilsson B.E. Changes in bone mineral content following tibia shaft fractures // Clin. Orthop. — 1979a. — Vol. 144. — P 226—229.

11. Andersson S.M., Nilsson B.E. Posttraumatic bone mineral loss in tibia shaft fractures treated with a weight-bearing brace // Acta. Orthop. Scand. — 1979c. — Vol. 50. — P. 689—691.

12. Assessment of fracture risk and its application of screening for postmenopausal osteoporosis. Technical Report Series 843.World Health Organisation. — Geneva, 1994. — 134p.

13. Augat P., Claes L. Increased cortical remodeling after osteotomy causes posttraumatic osteopenia // Bone. — 2008. — Vol. 43, № 3. — P. 539—543.

14. Briggs AD et al. Longitudinal study of vitamin D metabolites after long bone fracture / A.D. Briggs, V. Kuan, C.L. Greiller, et al. // J. Bone Miner. Res. — 2013. — Vol. 28, № 6. — P. 1301—1307.

15. Cattermole H.C., Cook J.E., Fordham J.N., Muckle D.S., Cunningham J.L. Bone mineral changes during tibial fracture healing // Clin. Orthop. Relat. Res. — 1997. — Vol. 339. — P 190 — 196.

16. Cauley J.A., Danielson M.E., Boudreau R.M., Forrest K.Y., Zmuda J.M., Pahor M., Tylavsky F.A., Cummings S.R., Harris T.B., Newman A.B. Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study // J. Bone Miner. Res. — 2007. — Vol. 22. — P. 1088—1095.

17. Center J.R., Bliuc D., Nguyen T.V., Eisman J.A. Risk of subsequent fracture after low-trauma fracture in men and women // Jama. — 2007. — Vol. 297 — P. 387—394.

18. Ceroni D., Martin X.E., Delhumeau C., Farpour-Lambert N.J., De Coulon G., Dubois-Ferrière V., Rizzoli R. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents // J. Bone Joint Surg. Am. — 2013. — Vol. 95, № 11. — P. 1037—1043.

19. Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R. Fracture history of healthy premenopausal women is associated with a reduction of cortical microstructural components at the distal radius // Bone. — 2013. — Vol. 55, № 2. — P. 377—383.

20. Chevalley T., Bonjour J.P., van Rietbergen B., Rizzoli R., Ferrari S. Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass // J. Clin. Endocrinol. Metab. — 2012. — Vol. 97, № 11. — P 4174—4181.

21. Clayton R.A.E., Gaston M.S., Ralston S.H., Court-Brown C.M., McQueen M.M. Association between decreased bone mineral density and severity of distal radial fractures // J. Bone Joint Surg. Am. — 2009. — Vol. 91. — P. 613—619.

22. dinician’s guide to prevention and treatment of osteoporosis [Электронный ресурс]. — 2013. — Точка доступа: www.nof.org.

23. Clinton J et al. Proximal humerus fracture as a risk factor for subsequent hip fractures / J. Clinton, A. Franta, N.L. Polissar, et al. // J. Bone Joint Surg. Am. — 2009. — Vol. 91. — P. 503—511.

24. Darelid A., Ohlsson C., Rudang R., Kindblom J.M., Mellstro'm D., Lorentzon M. Trabecular volumetric bone mineral density is associated with previous fracture during childhood and adolescence in males: The GOOD Study // Journal of Bone and Mineral Research. — 2011. — Vol. 25, № 3. — P 537—544.

25. Davis J.W., Ross P.D., Wasnich R.D., MacLean C.J, Vogel J.M. Long-term precision of bone loss rate measurements among postmenopausal women // Calcif. Tissue Internat. — 1991. — Vol. 48. — Р 311 — 318.

26. Dennison E., Mohamed M.A., Cooper C. Epidemiology of osteoporosis // Rheum Dis Clin North Am. — 2006. — Vol. 32, № 4. — P 617 — 629.

27. Dirschla D.R., Piedrahita L., Hendersona R.C. Bone mineral density 6 years after a hip fracture: a prospective, longitudinal study // Bone. — 2000. — Vol. 26, Iss. 1. — P. 95—98.

28. Eklund F., Nordström A., Björnstig U., Nordström P Bone mass, size and previous fractures as predictors of prospective fractures in an osteoporotic referral population // Bone. — 2009. — Vol. 45, Iss 4. — P. 808—813.

29. Eyres K.S., Kanis J.A. Bone loss after tibial fracture // J. Bone Joint Surg [Br]. — 1995. — Vol. 77. — P. 473—478.

30. Facts and Statistics [Электронный ресурс]. — 2013. — Точка доступа: http://www.iofbonehealth.org/facts-statistics#category-14

31. Farr J.N., Tomas R., Chen Z., Lisse J.R., Lohman T.G., Going S.B. Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls // J. Bone Miner. Res. — 2011. — Vol. 26. — P 380—387.

32. Finsen V., Haave O. Changes in bone-mass after tibial shaft fracture // Acta Orthop. Scand. — 1987. — Vol. 58. — P. 369—371.

33. Fiorano-Charlier C., Ostertag A., Aquino J.P, de Vernejoul M.C., Baudoin C. Reduced bone mineral density in postmenopausal women self-reporting premenopausal wrist fractures // Bone. — 2002. — Vol. 31, № 1. — Р 102—106.

34. Fung E.B., Humphrey M.L., Gildengorin G., Goldstein N., Hoffinger S.A. Rapid remineralization of the distal radius after forearm fracture in children // J. Pediatr. Orthop. — 2011. — Vol. 31. — P. 138—143.

35. Geusens P., van Geel T., Huntjens K., van Helden S., Bours S., van den Bergh J. Clinical fractures beyond low Bmd: Bmd & fracture risk // International Journal of Clinical Rheumatology. — 2011. — Vol. 6, № 4. — P 411—421.

36. Goulding A., Jones I.E., Williams S.M., Grant A.M., Taylor R.W., Manning P. J., Langley J. First fracture is associated with increased risk of new fractures during growth //J Pediatr. — 2005. — Vol. 146, № 2. — P. 286—288.

37. Huntjens K.M.B., Kosar S., van Geel T.A.C.M., Geusens P.P., Willems P., Kessels A., Winkens B.,Brink P., van Helden S. Risk of subsequent fracture and mortality within 5 years after a non-vertebral // Osteoporos Int. — 2010. — Vol. 21, № 12 — R 2075—2082.

38. Ilich J., Zito M., Brownbill R., Joyce M. Change in bone mass after colles' fracture a case report on unique data collection and long-term implications // Journal of Clinical Densitometry. — 2000. — Vol. 3, Iss. 4. — P. 383—389.

39. Jamal S.A., Ljunggren O., Stehman-Breen C., Cummings S.R., McClung M.R., Goemaere S., Ebeling P.R., Franek E., Yang Y.C., Egbuna O.I., Boonen S., Miller P.D. Effects of denosumab on fracture and bone mineral density by level of kidney function // J. Bone Miner Res. — 2011. — Vol. 26, № 8. — P. 1829—1835.

40. Jarvinen M., Kannus P. Current concepts review injury of an extremity as a risk factor for the development of osteoporosis // J. of Bone and Joint Surgery. — 1997. — Vol. 79-A, №. 2. — P. 263—276.

41. Johnell O., Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures // Osteoporos Int. — 2006. — Vol. 17, № 12. — P. 1726—1733.

42. Johnell O., Kanis J.A., Od'en A., Sernbo F.I., Redlund-Johnell I., Petterson C., De Laet C., Jönsson B. Fracture risk following an osteoporotic fracture // Osteoporos Int. — 2004. — Vol. 15. — P. 175—179.

43. Johnston, C.C., Jr., Slemenda C.W., Melton L.J. Clinical use of bone densitometry // New England J. Med. — 1991. — Vol. 324. — P. 1105—1109.

44. Kalkwarf H.J., Laor T., Bean J.A. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA) // Osteoporos Int. — 2011. — Vol. 22, № 2. — P. 607—616.

45. Kanis J.A. Johnell O., De Laet C., Johansson H., Oden A., Delmas P., Eisman J., Fujiwara S., Garnero P., Kroger H., McCloskey E.V, Mellstrom D., Melton L.J, Pols H., Reeve A., Tenenhouse A. A metaanalysis of previous fracture and subsequent fracture risk // Bone. — 2004. — Vol. 35. — P. 375—382.

46. Kanis J.A. on behalf of the World Health Organization Scientific Group Assessment of osteoporosis at the primary health care level. Report of a WHO Scientific Group [Электронный ресурс]. — 2007. — University of Sheffield, UK. — Точка доступа: http://www.shef.ac.uk/ FRAX/pdfs/WHO_Technical_Report.pdf.

47. Kanis J.A., Johnell O., Oden A., Jonsson B., De Laet C., Dawson A. Risk of hip fracture according to the World Health Organization criteria for osteoporosis and osteopenia // Bone. — 2000. — Vol. 27. — P. 585—590.

48. Kanis, J.A., Odén, A., McCloskey, E.V. A Systematic Review of Hip Fracture Incidence and Probability of Fracture Worldwide // Osteoporosis Int. — 2012. — Vol. 23, № 9. — P. 2239—2256.

49. Kannus P., Järvinen M., Sievänen H., Järvinen T.A., Oja P., Vuori I. Reduced bone mineral density in men with a previous femur fracture // J. Bone Miner. Res. — 1994. — Vol. 9, № 11. — P. 1729—1736.

50. Karlsson M., Nilsson J.A., Sernbo I., Redlund-Johnell I., Johnell O., Obrant K.J. Changes of bone mineral mass and soft tissue composition after hip fracture // Bone. — 1996. — Vol. 18, №1. — P. 19—22.

51. Karlsson M.K., Hasserius R., Obrant K.J. Individuals who sustain nonosteoporotic fractures continue to also sustain fragility fractures // Calcif Tissue Int. — 1993. — Vol. 53. — P. 229—231.

52. Kettunen J., Kröger H., Bowditch M., Joukainen J., Suomalainen O. Bone mineral density after removal of rigid plates from forearm fractures: preliminary report // J. Orthop. Sci. — 2003;8(6):772—6.

53. Klotzbuecher C.M, Ross P.D., Landsman, P.B., Abbott T. A. 3rd, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis // J. Bone Miner Res — 2000. — Vol. 15. — P. 721—739.

54. Kröger H., Kettunen J., Bowditch M. Bone mineral density after the removal of intramedullary nails: a cross-sectional and longitudinal study // Orthop. Sci. — 2002. — Vol.7, № 3. — P. 325—330.

55. Lauritzen J.B., McNair P.A., Lund B. Risk factors for hip fractures. A review // Dan. Med. Bull. — 1993. — Vol. 40, № 4. — P. 479—485.

56. Lee S.H., Lee T.J., Cho K.J., Shin S.H., Moon K.H. Subsequent hip fracture in osteoporotic hip fracture patients // Yonsei Med. J. — 2012. — Vol. 53, № 5. — P. 1005—1009.

57. Mallmin H., Ljunghall S., Naessén T. Colles' fracture associated with reduced bone mineral content. Photon densitometry in 74 pa tients with matched controls // Acta Orthop. Scand. — 1992. — Vol. 63, № 5. — P. 552—554.

58. Nilsson B.E., Westlin N. Long-term observations on the loss of bone mineral following Colles’ fracture // Acta. Orthop. Scend. — 1975. — Vol. 46. — P. 61—66.

59. Petersen M.M., Gehrchen P.M., Nielsen P.K., Lund B. Loss of bone mineral of the hip assessed by DEXA following tibial shaft fractures // Bone. — 1997. — Vol. 20, № 5. — P. 491—495.

60. Rozental T.D., Deschamps L.N., Taylor A., Earp B., Zurakowski D., Day C.S., Bouxsein M.L. Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture // J. Bone Joint Surg. Am. — 2013. — Vol. 95, № 7. — P. 633—642.

61. Rozental T.D., Shah J., Chacko A.T., Zurakowski D. Prevalence and predictors of osteoporosis risk in orthopaedic patients // Clin. Orthop. Relat. Res. — 2010. — Vol. 468. — P. 1765—1772.

62. Silman A.J. The patient with fracture: the risk of subsequent fractures // Am. J. Med. — 1995. — Vol. 98. P. — 12S—16S.

63. Siris E.S., Chen Y.T., Abbott T.A., Barrett-Connor E., Miller P.D., Wehren L.E., Berger M.L. Bone mineral density thresholds for pharmacological intervention to prevent fractures // Arch Intern Med. — 2004. — Vol. 164. — P. 1108—1112.

64. Sosa M., Saavedra P., del Pino-Montes J., Alegre J., Pérez-Cano R., Guerra G.M., Diaz-Curiel M., Valero C., Munoz-Torres M., Torrijos A., Mosquera J., Gómez-Alonso C. Postmenopausal women with Соlles' fracture have lower values of bone mineral density than controls as measured by quantitative ultrasound and densitometry // J. Clin. Densitom. — 2005. — Vol. 8, № 4. — P. 430—435.

65. Stein E.M., Liu X.S., Nickolas T.L., Cohen A., Thomas V., McMahon D.J., Zhang C., Yin P. T., Cosman F., Nieves J., Guo X.E., Shane E. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures // J. Bone Miner. Res. — 2010. — Vol. 25 — P. 2572—2581.

66. Stein E.M., Liu X.S., Nickolas T.L., Cohen A. , Thomas V., McMahon D.J., Zhang C., Cosman F., Nieves J., Greisberg J., Guo X.E., Shane E. Abnormal microarchitecture and stiffness in postmenopausal women with ankle fractures // J. Clin. Endocrinol. Metab. — 2011. — Vol. 96, № 7. — P. 2041—2048.

67. Unnanuntana A., Ton Q.V., Kleimeyer B.A., Nguyen J.T., Lane J.M. A fracture does not adversely affect bone mineral density responses after teriparatide treatment // Clin. Orthop. Relat. Res. — 2012. — Vol. 470. — P. 927—936.

68. van der Poest Clement E., van der Wiel H., Patka P., Roos J.C., Lips P. Long-term consequences of fracture of the lower leg: crosssectional study and long-term longitudinal follow-up of bone mineral density in the hip after fracture of lower leg // Bone. 1999. — Vol. 24, № 2. — P. 131—134.

69. van der Wiel H.E, Lips P., Nauta J., Patka P., Haarman H.J., Teule G.J. Loss of bone in the proximal part of the femur following unstable fractures of the leg // J. Bone and Joint Surg. — 1994. — Vol. 76-A. — P. 230—236.

70. van Geel T. A., Helden S., Geusens P.P., Winkens B., Dinant G.-J. Clinical subsequent fractures cluster in time after first fractures // Ann. Rheum. Dis. — 2009. — Vol. 68. — P. 101—104.

71. van Helden S., Cals J., Kessels F., Brink P., Dinant G.J., Geusens P. Risk of new clinical fractures within 2 years following a fracture // Osteoporos Int. — 2006. — Vol. 17. — P. 348—354.

72. van Helden S., Geel A.C., Geusens P.P., Kessels A., Nieuwenhuijzen Kruseman A.C., Brink P.R. Bone and fall-related fracture risks in women and men with a recent clinical fracture // J. Bone Jt Surg. Am. — 2008. — Vol. 90. — P. 241—248.

73. Vietch S.W., Findlay S.C., Hamer A.J., Blumsohn A., Eastell R., Ingle B.M. Changes in bone mass and bone turnover following tibial shaft fracture // Osteoporosis Int. — 2006. — Vol. 17. — № 3. — Р 364—372.

74. Vochteloo A.J.H., van der Burg B.L.S.B, Röling M.A., van Leeuwen D.H., van den Berg P., Niggebrugge A.H., de Vries M.R., Tuinebreijer W.E., Bloem R.M., Nelissen R.G., Pilot P. Contralateral hip fractures and other osteoporosis-related fractures in hip fracture patients: incidence and risk factors. An observational cohort study of 1,229 // Arch. Orthop. Trauma Surg. — 2012. — Vol. 132, № 8. — P. 1191—1197.

75. Westlin N.E. Loss of bone mineral after Colle’s fracture // Clin. Orthop. — 1974. — Vol. 102. — P. 194—199.

76. Wigderowitz C. A., Rowley D. I., Mole P. A., Paterson C. R., Abel E. W. Bone mineral density of the radius in patients with Colles’ fracture // J. Bone Joint Surg. [Br]. — 2000. — Vol. 82-B. — P. 87—89.


Review

For citations:


Pobel E.A. FRACTURE — A RISK FACTOR FOR DEVELOPMENT AND PROGRESSION OF OSTEOPENIA AND OSTEOPOROSIS. Osteoporosis and Bone Diseases. 2013;16(3):28-34. (In Russ.)

Views: 7747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)