Evaluation of diagnostic potential of the collagen osteogenesis marker (P1NP) compared with osteocalcin in Cushing’s disease
https://doi.org/10.14341/osteo10266
Abstract
Background: Secondary osteoporosis is a significant problem, especially in patients with endocrine pathology, which is not accompanied constantly by distinct clinical symptoms. Markers of bone origin are needed, which could be used in osteoporosis diagnosis to clarify its genesis, especially in young people who have secondary osteoporosis more often than older patients. In Cushing’s disease (CD), such a marker, in addition to osteocalcin, could be another bone formation marker, procollagen type 1 N-terminal propeptide (P1NP).
Aims: To study the diagnostic potential of P1NP as an additional marker of endogenous hypercortisolism (Cushing’s disease) compared to osteocalcin.
Materials and methods: The study involved patients with Cushing’s disease and healthy volunteers, matched by gender, age, and body mass index. The levels of osteocalcin and P1NP were assessed in both groups, the electrochemiluminescence method for P1NP (Cobas e411 (Roche, Switzerland)) and for osteocalcin (Cobas 6000 Module e601 (Roche, Switzerland)) was used. ROC analysis was performed with the calculation of sensitivity and specificity of the method to determine the cut-off point for P1NP in CD diagnosis.
Results: 29 patients with Cushing’s disease and 27 healthy individuals from the control group were included in the study. There were no differences in age, sex and body mass index (p = 0.488, 0.426 and 0.531, respectively). Both studied bone formation markers (osteocalcin and P1NP) were reduced in patients with CD: 8.53 ng/ml (Q25%;Q75% 5.40; 12.41) versus 22.45 ng/ml (Q25%;Q75% 17.36; 26.31) (p <0.001) and 28.50 ng/ml (Q25%;Q75% 18.00; 44.00) versus 56.50 ng/ml (Q25%;Q75% 39.50; 65.50) (p <0.001), respectively. The area under the receiver operating characteristic curve (AUC) was 0.808 (95% CI 0.693–0.924) for P1NP and 0.925 (95% CI 0.857–0.992) for osteocalcin, that indicates the greater diagnostic value of osteocalcin for CD verification in healthy controls. Optimal cut-off points were obtained: 53.4 ng/ml (values below are more typical for patients with CD; sensitivity of the method is 96.55%, specificity 57.69%) for P1NP and 15.285 ng/ml (below for patients with CD; sensitivity was 92.59%, specificity 77.78 %) for osteocalcin.
Conclusions: The diagnostic potential of osteocalcin to detect Cushing’s disease in the population is higher compared to P1NP. However, applying of P1NP can be useful because, unlike osteocalcin, it is a direct indicator of the formation of bone matrix collagen structures, that is important for assessing the degree of inhibition of collagen type 1 synthesis in CD and deterioration of bone tissue due to glucocorticoid-induced osteoporosis.
About the Authors
Timur T. TsorievRussian Federation
Research Scientist, Department of Neuroendocrinology and Bone Diseases, Institute for Clinical Endocrinology
Zhanna E. Belaya
Russian Federation
PhD, Chief Research Scientist, Head of the Department of Neuroendocrinology and Bone Diseases, Institute for Clinical Endocrinology
Lyudmila Y. Rozhinskaya
Russian Federation
PhD, Professor, Chief Research Scientist, Department of Neuroendocrinology and Bone Diseases, Institute for Clinical Endocrinology
Larisa V. Nikankina
Russian Federation
PhD, Acting Head of the Clinical Diagnostic Laboratory
References
1. Марова Е.И., Арапова С.Д., Белая Ж.Е., и др. Болезнь Иценко-Кушинга: клиника, диагностика, лечение. – М.: ГЭОТАР-Медиа, 2012. [Marova EI, Arapova SD, Belaya ZE, et al. Bolezn’ Itsenko-Kushinga: klinika, diagnostika, lechenie. Moscow: GEOTAR-Media; 2012. (In Russ).]
2. Драгунова Н.В., Белая Ж.Е., Рожинская Л.Я. Состояние костно-мышечной системы при эндогенном гиперкортицизме. // Остеопороз и остеопатии. - 2012. - Т. 15. - №3. - C. 18-24. [Dragunova NV, Belaya ZE, Rozhinskaya LY. Musculoskeletal System in the Endogenous Hypercortisolism. OSTEO. 2012;15(3):18-24. (In Russ).] doi: https://doi.org/10.14341/osteo2012318-24.
3. Белая Ж.Е., Драгунова Н.В., Рожинская Л.Я., и др. Низкотравматичные переломы у пациентов с эндогенным гиперкортицизмом. Предикторы и факторы риска, влияние на качество жизни. // Остеопороз и остеопатии. – 2013. - Т. 16. – №1. – С. 7–13. [Belaya ZE, Dragunova NV, Rozhinskaya LY, et al. Low-Traumatic Fractures in Patients with Endogenous Hypercortisolism. Predictors and Risk Factors, the Impact on Quality of Life. OSTEO. 2013;16(1):7-13. (In Russ).] doi: https://doi.org/10.14341/osteo201317-13.
4. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. The Lancet. 2015;386(9996):913-927. doi: https://doi.org/10.1016/s0140-6736(14)61375-1
5. Burton T, Le Nestour E, Neary M, et al. Algorithm development and the clinical and economic burden of Cushing’s disease in a large US health plan database. Pituitary. 2016;19(2):167–174. doi: https://doi.org/10.1007/s11102-015-0695-9.
6. Eller-Vainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012;27(10):2223–2230. doi: https://doi.org/10.1002/jbmr.1648.
7. Belaya ZE, Hans D, Rozhinskaya LY, et al. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch Osteoporos. 2015;10:44. doi: https://doi.org/10.1007/s11657-015-0244-1.
8. Vinolas H, Grouthier V, Mehsen-Cetre N, et al. Assessment of vertebral microarchitecture in overt and mild Cushing’s syndrome using trabecular bone score. Clin Endocrinol (Oxf). 2018;89(2):148–154. doi: https://doi.org/10.1111/cen.13743.
9. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., и др. Возможности маркера костного обмена – остеокальцина – для диагностики эндогенного гиперкортицизма и вторичного остеопороза. // Остеопороз и остеопатии. – 2011. – Т.14. – №2. – С. 7–10. [Belaya ZE, Rozhinskaya LY, Mel’nichenko GA, et al. Vozmozhnosti markera kostnogo obmena – osteokal’tsina – dlya diagnostiki endogennogo giperkortitsizma i vtorichnogo osteoporoza. OSTEO. 2011;14(2):7-10. (In Russ).] doi: https://doi.org/10.14341/osteo201127-10.
10. Brandt J, Krogh TN, Jensen CH, et al. Thermal instability of the trimeric structure of the N-terminal propeptide of human procollagen type I in relation to assay technology. Clin Chem. 1999;45(1):47–53.
11. Stokes FJ, Ivanov P, Bailey LM, et al. The effects of sampling procedures and storage conditions on short-term stability of blood-based biochemical markers of bone metabolism. Clin Chem. 2011;57(1):138–140. doi: https://doi.org/10.1373/clinchem.2010.157289.
12. Song L. Calcium and bone metabolism indices. Adv Clin Chem. 2017;82:1–46. doi: https://doi.org/10.1016/bs.acc.2017.06.005.
13. Koivula M-K, Risteli L, Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem. 2012;45(12):920–927. doi: https://doi.org/10.1016/j.clinbiochem.2012.03.023.
14. Vasikaran S, Eastell R, Bruyère O, et al. for the IOF-IFCC Bone Marker Standards Working Group. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22(2):391–420. doi: https://doi.org/10.1007/s00198-010-1501-1.
15. Brown JP, Albert C, Nassar BA, et al. Bone turnover markers in the management of osteoporosis. Clin Biochem. 2009;42(10-11):929–942. doi: https://doi.org/10.1016/j.clinbiochem.2009.04.001.
16. Hlaing TT, Compston JE. Biochemical markers of bone turnover – uses and limitations. Ann. Clin. Biochem. 2014;51(2):189-202. doi: https://doi.org/10.1177/0004563213515190
17. Мельниченко Г.А., Дедов И.И., Белая Ж.Е., и др. Болезнь Иценко-Кушинга: клиника, диагностика, дифференциальная диагностика, методы лечения. // Проблемы эндокринологии. – 2015. – Т.61. – №2. – С. 55–77. [Melnichenko GA, Dedov II, Belaya ZE, et al. Cushing’s disease: the clinical features, diagnostics, differential diagnostics, and methods of treatment. Problems of Endocrinology. 2015;61(2):55. (In Russ).] doi: https://doi.org/10.14341/probl201561255-77.
18. Labnet.health.nz [Internet]. Christchurch, New Zealand: Canterbury Health Laboratories; c2013-2019 [cited 2019 Jun 24]. Available from: http://www.labnet.health.nz/testmanager/index.php?fuseaction=main.DisplayTest&testid=1433.
19. Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115(5):654–657. doi: https://doi.org/10.1161/circulationaha.105.594929.
20. Kramer MS. Clinical epidemiology and biostatistics: A primer for clinical investigators and decision-makers. 1st ed. Berlin: Springer-Verlag Berlin Heidelberg; 1988. 201–219 pp.
21. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–635.
22. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. doi: https://doi.org/10.1148/radiology.143.1.7063747.
23. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148(3):839–843. doi: https://doi.org/10.1148/radiology.148.3.6878708.
24. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 1998;17(8):857-872. doi: https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
25. Белая Ж.Е., Ильин А.В., Мельниченко Г.А., и др. Автоматизированный электрохемилюминесцентный метод определения кортизола в слюне для диагностики эндогенного гиперкортицизма среди пациентов с ожирением. // Ожирение и метаболизм. – 2011. – Т. 8. – №2. – С. 56–63. [Belaya ZE, Il’in AV, Mel’nichenko GA, et al. Avtomatizirovannyy elektrokhemilyuminestsentnyy metod opredeleniya kortizola v slyune dlya diagnostiki endogennogo giperkortitsizma sredi patsientov s ozhireniem. Obesity and metabolism. 2011; (2):56-63. (In Russ).] doi: https://doi.org/10.14341/2071-8713-4954.
26. Белая Ж.Е., Рожинская Л.Я., Драгунова Н.В., и др. Сывороточные концентрации белков регуляторов остеобластогенеза и остеокластогенеза у пациентов с эндогенным гиперкортицизмом. // Остеопороз и остеопатии. – 2012. – Т.15. – №2. – С. 3–8. [Belaya ZE, Rozhinskaya LY, Dragunova NV, et al. Serum Concentrations of Protein Regulators Osteoblastogenesis and Osteoclastogenesis in Patients with Endogenous Hypercorticism. OSTEO. 2012;15(2):3-8. (In Russ).] doi: https://doi.org/10.14341/osteo201223-8.
27. Belaya ZE, Iljin AV, Melnichenko GA, et al. Diagnostic performance of osteocalcin measurements in patients with endogenous Cushing’s syndrome. Bonekey Rep. 2016;5:815. doi: https://doi.org/10.1038/bonekey.2016.42.
28. Mizokami A, Kawakubo-Yasukochi T, Hirata M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017;132:1–8. doi: https://doi.org/10.1016/j.bcp.2017.02.001.
29. Гребенникова Т.А., Белая Ж.Е., Цориев Т.Т., и др. Эндокринная функция костной ткани. // Остеопороз и остеопатии. – 2015. – Т.18. – №1. – С. 28–37. [Grebennikova TA, Belaya ZE, Tsoriev TT, et al. The Endocrine Function of the Bone Tissue. OSTEO. 2015;18(1):28-37. (In Russ.)] doi: https://doi.org/10.14341/osteo2015128-37.
30. Marin L, Koivula M-K, Jukkola-Vuorinen A, et al. Comparison of total and intact aminoterminal propeptide of type 1 procollagen assays in patients with breast cancer with or without bone metastases. Ann Clin Biochem. 2011;48(Pt 5):447–451. doi: https://doi.org/10.1258/acb.2011.011040.
Supplementary files
|
1. Figure 1. ROC analysis for cut-off points P1NP and osteocalcin with endogenous hypercorticism (NIR) | |
Subject | ||
Type | Other | |
View
(56KB)
|
Indexing metadata ▾ |
Review
For citations:
Tsoriev T.T., Belaya Zh.E., Rozhinskaya L.Y., Nikankina L.V. Evaluation of diagnostic potential of the collagen osteogenesis marker (P1NP) compared with osteocalcin in Cushing’s disease. Osteoporosis and Bone Diseases. 2019;22(1):10-17. (In Russ.) https://doi.org/10.14341/osteo10266

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).