Osteomalacia in practice of endocrinologist: etiology, pathogenesis, differential diagnosis with osteoporosis
https://doi.org/10.14341/osteo12117
Abstract
Osteoporosis is the most common cause of low bone mineral density (BMD) and low-traumatic fractures in adults. However, differential diagnosis should also consider other causes of decreased BMD, including osteomalacia, as treatment for these conditions vary significantly. Osteomalacia is a systemic disorder characterized by decrease in bone strength due to of excessive accumulation of non-mineralized osteoid and uncoupling between bone matrix formation and mineralization. Osteomalacia in adults mostly develops due to severe vitamin D deficiency of any etiology, less often – along with kidney pathology, mesenchymal tumors secreting fibroblast growth factor 23 or hereditary metabolic bone diseases. Clinical symptoms of osteomalacia are nonspecific and mostly manifest by generalized diffuse bone pain, muscle weakness, skeletal deformities and often go unnoticed at initial stage of the disease. Histomorphometric examination is the most accurate method of the diagnosis, which allows assessment of bone formation rate and calcification. The utmost priority of the treatment of osteomalacia of any etiology is the elimination of vitamin D deficiency, hypocalcemia, hypophosphatemia and prevention of bone deformities progression and muscle hypotension.
About the Authors
Olga O. GolouninaRussian Federation
Student, Medical faculty
Gyuzel E. Runova
Russian Federation
MD, PhD
Valentin V. Fadeyev
Russian Federation
MD, PhD, Professor
References
1. Bilezikian JP, Bouillon R, Clemens T, et al, eds. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 1st ed. Wiley; 2018. doi: https://doi.org/10.1002/9781119266594
2. Whyte MP. Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233-246. doi: https://doi.org/10.1038/nrendo.2016.14
3. Gifre L, Peris P, Monegal A, et al. Osteomalacia revisited : a report on 28 cases. Clin Rheumatol. 2011;30(5):639-645. doi: https://doi.org/10.1007/s10067-010-1587-z
4. Whyte MP, Thakker RV. Rickets and osteomalacia. Medicine. 2009;37(9):483-488. doi: https://doi.org/10.1016/j.mpmed.2009.06.004
5. Reginato AJ, Coquia JA. Musculoskeletal manifestations of osteomalacia and rickets. Best Pract Res Clin Rheumatol. 2003;17(6):1063-1080. doi: https://doi.org/10.1016/j.berh.2003.09.004
6. Christakos S, Li S, De La Cruz J, Bikle DD. New developments in our understanding of vitamin metabolism, action and treatment. Metabolism. 2019;98:112-120. doi: https://doi.org/10.1016/j.metabol.2019.06.010
7. Bove-Fenderson E, Mannstadt M. Hypocalcemic disorders. Best Pract Res Clin Endocrinol Metab. 2018;32(5):639-656. doi: https://doi.org/10.1016/j.beem.2018.05.006
8. Khundmiri SJ, Murray RD, Lederer E. PTH and Vitamin D. Compr Physiol. 2016;6(2):561-601. doi: https://doi.org/10.1002/cphy.c140071
9. Aggarwal V, Seth A, Aneja S, et al. Role of calcium deficiency in development of nutritional rickets in Indian children: a case control study. J Clin Endocrinol Metab. 2012;97(10):3461-3466. doi: https://doi.org/10.1210/jc.2011-3120
10. Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys. 2012;523(1):95-102. doi: https://doi.org/10.1016/j.abb.2012.02.016
11. Margolis RN, Christakos S. The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation. An update. Ann N Y Acad Sci. 2010;1192:208-214. doi: https://doi.org/10.1111/j.1749-6632.2009.05227.x
12. Morris HA. Vitamin D activities for health outcomes. Ann Lab Med. 2014;34(3):181-186. doi: https://doi.org/10.3343/alm.2014.34.3.181
13. Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am. 2010;39(2):255-269, table of contents. doi: https://doi.org/10.1016/j.ecl.2010.02.007
14. Li YC, Bolt MJ, Cao LP, Sitrin MD. Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol Endocrinol Metab. 2001;281(3):E558-564. doi: https://doi.org/10.1152/ajpendo.2001.281.3.E558
15. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A. 2001;98(23):13324-13329. doi: https://doi.org/10.1073/pnas.231474698
16. Molin A, Wiedemann A, Demers N, et al. Vitamin D-Dependent Rickets Type 1B (25-Hydroxylase Deficiency): A Rare Condition or a Misdiagnosed Condition? J Bone Miner Res. 2017;32(9):1893-1899. doi: https://doi.org/10.1002/jbmr.3181
17. Al Mutair AN, Nasrat GH, Russell DW. Mutation of the CYP2R1 vitamin D 25-hydroxylase in a Saudi Arabian family with severe vitamin D deficiency. J Clin Endocrinol Metab. 2012;97(10):E2022-2025. doi: https://doi.org/10.1210/jc.2012-1340
18. Casella SJ, Reiner BJ, Chen TC, et al. A possible genetic defect in 25-hydroxylation as a cause of rickets. J Pediatr. 1994;124(6):929-932. doi: https://doi.org/10.1016/s0022-3476(05)83184-1
19. Tosson H, Rose SR. Absence of mutation in coding regions of CYP2R1 gene in apparent autosomal dominant vitamin D 25-hydroxylase deficiency rickets. J Clin Endocrinol Metab. 2012;97(5):E796-801. doi: https://doi.org/10.1210/jc.2011-2716
20. Zhu JG, Ochalek JT, Kaufmann M, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650-15655. doi: https://doi.org/10.1073/pnas.1315006110
21. Jones G, Prosser DE, Kaufmann M. Chapter 5 - The Activating Enzymes of Vitamin D Metabolism (25- and 1α-Hydroxylases). In: Vitamin D. Volume 1: Biochemistry, Physiology and Diagnostics. 4th ed. Academic Press; 2018. p. 57-79. doi: https://doi.org/10.1016/b978-0-12-809965-0.00005-7
22. Thambiah S, Roplekar R, Manghat P, et al. Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif Tissue Int. 2012;90(6):473-480. doi: https://doi.org/10.1007/s00223-012-9595-4
23. Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 2015;88(2):235-240. doi: https://doi.org/10.1038/ki.2015.156
24. Рожинская Л.Я., Белая Ж.Е., Луценко А.С. Новые возможности лечения вторичного гиперпаратиреоза у пациентов с терминальной стадией хронической болезни почек, получающих заместительную почечную терапию гемодиализом. // Остеопороз и остеопатии. — 2017. — Т. 20. — №1. — С. 32-38. [Rozhinskaya LY, Belaya ZE, Lutsenko AS. Novel treatment options for secondary hyperparathyroidism in end-stage kidney disease patients on hemodialysis therapy. Osteoporosis and bone diseases. 2017;20(1):32-38. (In Russ.)] doi: https://doi.org/10.14341/osteo2017126-33
25. Barker SL, Pastor J, Carranza D, et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. 2015;30(2):223-233. doi: https://doi.org/10.1093/ndt/gfu291
26. Гребенникова Т.А., Белая Ж.Е., Цориев Т.Т., и др. Эндокринная функция костной ткани. // Остеопороз и остеопатии. — 2015. — Т. 18. — №1. — С. 28-37. [Grebennikova TA, Belaya ZE, Tsoriev TT, et al. The endocrine function of the bone tissue. Osteoporosis and bone diseases. 2015;18(1):28-37. (In Russ.)] doi: https://doi.org/10.14341/osteo2015128-37
27. Fang Y, Ginsberg C, Seifert M, et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25(8):1760-1773. doi: https://doi.org/10.1681/ASN.2013080818
28. Silver J, Rodriguez M, Slatopolsky E. FGF23 and PTH--double agents at the heart of CKD. Nephrol Dial Transplant. 2012;27(5):1715-1720. doi: https://doi.org/10.1093/ndt/gfs050
29. Klootwijk ED, Reichold M, Unwin RJ, et al. Renal Fanconi syndrome: taking a proximal look at the nephron. Nephrol Dial Transplant. 2015;30(9):1456-1460. doi: https://doi.org/10.1093/ndt/gfu377
30. Hall AM, Bass P, Unwin RJ. Drug-induced renal Fanconi syndrome. QJM. 2014;107(4):261-269. doi: https://doi.org/10.1093/qjmed/hct258
31. Foreman JW. Fanconi Syndrome. Pediatr Clin North Am. 2019;66(1):159-167. doi: https://doi.org/10.1016/j.pcl.2018.09.002
32. Alexander RT, Bitzan M. Renal Tubular Acidosis. Pediatr Clin North Am. 2019;66(1):135-157. doi: https://doi.org/10.1016/j.pcl.2018.08.011
33. Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem. 2003;278(11):9843-9849. doi: https://doi.org/10.1074/jbc.M210490200
34. Saleem S, Aslam HM, Anwar M, et al. Fahr’s syndrome: literature review of current evidence. Orphanet J Rare Dis. 2013;8:156. doi: https://doi.org/10.1186/1750-1172-8-156
35. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248-1250. doi: https://doi.org/10.1038/ng1868
36. Noonan ML, White KE. FGF23 Synthesis and Activity. Curr Mol Biol Rep. 2019;5(1):18-25. doi: https://doi.org/10.1007/s40610-019-0111-8
37. Sako S, Niida Y, Shima KR, et al. A novel PHEX mutation associated with vitamin D-resistant rickets. Hum Genome Var. 2019;6:9. doi: https://doi.org/10.1038/s41439-019-0040-3
38. Zhang S, Zhang Q, Cheng L, et al. [Analysis of PHEX gene mutations in three pedigrees affected with hypophosphatemic rickets]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2018;35(5):644-647. doi: https://doi.org/10.3760/cma.j.issn.1003-9406.2018.05.005
39. Avitan-Hersh E, Tatur S, Indelman M, et al. Postzygotic HRAS mutation causing both keratinocytic epidermal nevus and thymoma and associated with bone dysplasia and hypophosphatemia due to elevated FGF23. J Clin Endocrinol Metab. 2014;99(1):E132-136. doi: https://doi.org/10.1210/jc.2013-2813
40. Imel EA, Econs MJ. Fibrous dysplasia, phosphate wasting and fibroblast growth factor 23. Pediatr Endocrinol Rev. 2007;4 Suppl 4:434-439.
41. Hasani-Ranjbar S, Ejtahed HS, Amoli MM, et al. SLC34A3 Intronic Deletion in an Iranian Kindred with Hereditary Hypophosphatemic Rickets with Hypercalciuria. J Clin Res Pediatr Endocrinol. 2018;10(4):343-349. doi: https://doi.org/10.4274/jcrpe.0057
42. Berman E, Nicolaides M, Maki RG, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med. 2006;354(19):2006-2013. doi: https://doi.org/10.1056/NEJMoa051140
43. Vandyke K, Fitter S, Dewar AL, et al. Dysregulation of bone remodeling by imatinib mesylate. Blood. 2010;115(4):766-774. doi: https://doi.org/10.1182/blood-2009-08-237404
44. O’Sullivan S, Lin JM, Watson M, et al. The skeletal effects of the tyrosine kinase inhibitor nilotinib. Bone. 2011;49(2):281-289. doi: https://doi.org/10.1016/j.bone.2011.04.014
45. Addison WN, Azari F, Sorensen ES, et al. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem. 2007;282(21):15872-15883. doi: https://doi.org/10.1074/jbc.M701116200
46. Родионова С.С., Захарова Е.Ю., Буклемишев Ю.В., и др. Гипофосфатазия у взрослых: клинические случаи и обзор литературы. // Остеопороз и остеопатии. — 2015. — T. 18. — №2. — С. 25-28. [Rodionova SS, Zakharova EY, Buklemishev YV, et al. Hypophosphatasia in adults: clinical cases and literature review. Osteoporosis and bone diseases. 2015;18(2):25-28. (In Russ.)] doi: https://doi.org/10.14341/osteo2015225-28.
47. Glorieux FH, Pettifor JM. Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets. Bonekey Rep. 2014;3:524. doi: https://doi.org/10.1038/bonekey.2014.19
48. Supornsilchai V, Hiranras Y, Wacharasindhu S, et al. Two siblings with a novel nonsense mutation, p.R50X, in the vitamin D receptor gene. Endocrine. 2011;40(1):62-66. doi: https://doi.org/10.1007/s12020-011-9450-9
49. Malloy PJ, Tasic V, Taha D, et al. Vitamin D receptor mutations in patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Mol Genet Metab. 2014;111(1):33-40. doi: https://doi.org/10.1016/j.ymgme.2013.10.014
50. Pang Q, Qi X, Jiang Y, et al. Clinical and genetic findings in a Chinese family with VDR-associated hereditary vitamin D-resistant rickets. Bone Res. 2016;4(1). doi: https://doi.org/10.1038/boneres.2016.18
51. Koren R. Vitamin D receptor defects: the story of hereditary resistance to vitamin D. Pediatr Endocrinol Rev. 2006;3 Suppl 3:470-475.
52. Nakabayashi M, Tsukahara Y, Iwasaki-Miyamoto Y, et al. Crystal Structures of Hereditary Vitamin D-Resistant Rickets-Associated Vitamin D Receptor Mutants R270L and W282R Bound to 1,25-Dihydroxyvitamin D3and Synthetic Ligands. J Med Chem. 2013;56(17):6745-6760. doi: https://doi.org/10.1021/jm400537h
53. Malloy PJ, Feldman D. Genetic Disorders and Defects in Vitamin D Action. Endocrinol Metab Clin North Am. 2010;39(2):333-346. doi: https://doi.org/10.1016/j.ecl.2010.02.004
54. Li YC, Amling M, Pirro AE, et al. Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice1. Endocrinology. 1998;139(10):4391-4396. doi: https://doi.org/10.1210/endo.139.10.6262
55. Izuora K, Twombly JG, Whitford GM, et al. Skeletal Fluorosis from Brewed Tea. J Clin Endocrinol Metab. 2011;96(8):2318-2324. doi: https://doi.org/10.1210/jc.2010-2891
56. Whyte MP, Totty WG, Lim VT, Whitford GM. Skeletal Fluorosis From Instant Tea. J Bone Miner Res. 2008;23(5):759-769. doi: https://doi.org/10.1359/jbmr.080101
57. Kurland ES, Schulman RC, Zerwekh JE, et al. Recovery From Skeletal Fluorosis (an Enigmatic, American Case). J Bone Miner Res. 2006;22(1):163-170. doi: https://doi.org/10.1359/jbmr.060912
58. Adams JE. Radiology of Rickets and Osteomalacia. In: Vitamin D. Volume 1: Biochemistry, Physiology and Diagnostics. 4th ed. Academic Press; 2018. p. 975-1006. doi: https://doi.org/10.1016/b978-0-12-809965-0.00054-9
59. Bhan A, Qiu S, Rao SD. Bone histomorphometry in the evaluation of osteomalacia. Bone Rep. 2018;8:125-134. doi: https://doi.org/10.1016/j.bonr.2018.03.005
60. Murshed M. Mechanism of Bone Mineralization. Cold Spring Harb Perspect Med. 2018;8(12):a031229. doi: https://doi.org/10.1101/cshperspect.a031229
61. Cazalbou S, Bertrand G, Drouet C. Tetracycline-Loaded Biomimetic Apatite: An Adsorption Study. J Phys Chem B. 2015;119(7):3014-3024. doi: https://doi.org/10.1021/jp5116756
62. Bitzan M, Goodyer PR. Hypophosphatemic Rickets. Pediatr Clin North Am. 2019;66(1):179-207. doi: https://doi.org/10.1016/j.pcl.2018.09.004
63. Fukumoto S, Ozono K, Michigami T, et al. Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab. 2015;33(5):467-473. doi: https://doi.org/10.1007/s00774-015-0698-7
64. John TJ, van der Made T, Conradie M, Coetzee A. Osteomalacia and looser zones. QJM. 2019;112(6):455-455. doi: https://doi.org/10.1093/qjmed/hcy293
65. Kim S, Park CH, Chung Y-S. Hypophosphatemic Osteomalacia Demonstrated by Tc-99m MDP Bone Scan. Clin Nucl Med. 2000;25(5):337-340. doi: https://doi.org/10.1097/00003072-200005000-00003
66. Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я., и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. // Проблемы эндокринологии. — 2017. — T. 63. — №6. — С. 392-426. [Melnichenko GA, Belaya ZE, Rozhinskaya LY, et al. Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis. Problems of endocrinology. 2018;63(6):392-426. (In Russ.)] doi: https://doi.org/10.14341/probl2017636392-426
67. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е., и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. // Проблемы эндокринологии. — 2016. — Т. 62. — №4. — С. 60-84. [Pigarova EA, Rozhinskaya LY, Belaya ZE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of endocrinology. 2016;62(4):60-84. (In Russ.)] doi: https://doi.org/10.14341/probl201662460-84
68. Дедов И.И., Мельниченко Г.А. Эндокринология. Национальное Руководство. 2-е изд. — М.: ГЭОТАР-Медиа; 2018. [Dedov II, Mel’nichenko GA. Endokrinologiya. National guidelines. 2nd ed. Moscow; 2018. (In Russ.)]
69. Basha B, Rao DS, Han Z-H, Parfitt AM. Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med. 2000;108(4):296-300. doi: https://doi.org/10.1016/s0002-9343(99)00460-x
70. Bhambri R, Naik V, Malhotra N, et al. Changes in bone mineral density following treatment of osteomalacia. J Clin Densitom. 2006;9(1):120-127. doi: https://doi.org/10.1016/j.jocd.2005.11.001
Supplementary files
Review
For citations:
Golounina O.O., Runova G.E., Fadeyev V.V. Osteomalacia in practice of endocrinologist: etiology, pathogenesis, differential diagnosis with osteoporosis. Osteoporosis and Bone Diseases. 2019;22(2):23-31. (In Russ.) https://doi.org/10.14341/osteo12117

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).