Limited joint mobility syndrome as a predictor of the diabetic foot syndrome
https://doi.org/10.14341/osteo12280
Abstract
Diabetes mellitus (DM) can lead to the development of late complications. In addition to the traditional late complications, a high prevalence of damage to the musculoskeletal system in diabetes was noted. The most appropriate term that reflects the defeat of the musculoskeletal system in diabetes is «limited joints mobility syndrome» (LJM). Damage to the hands in the presence of open painless stiffness of the joints, fixed flexion contractures, impaired fine motor skills of the hands and grip forces. Subsequently, it became clear that, over time, the restriction of joint mobility develops not only in the small joints of the hands, but also in other large and small joints of the limbs. Traditionally, LJM syndrome pays low attention on the part of practitioners in comparison with other micro- and macrovascular complications of diabetes, even though LJM can significantly impair functional activity, self-care, and impair the quality of life. It is assumed that damage to the periarticular tissues and joints in DM is caused by the accumulation of end glycation products. A decisive place in the diagnosis of LJM is the clinical examination. In the presence of LJM syndrome, the osteoarticular structures of the feet can be affected, timely diagnosis can lead to the development of diabetic foot syndrome.
About the Authors
Taras S. PanevinRussian Federation
MD
Lyudmila I. Alekseeva
Russian Federation
MD, PhD
Elena A. Taskina
Russian Federation
MD, PhD
Natalia G. Kashevarova
Russian Federation
MD, PhD
References
1. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. / Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. 9-й выпуск. // Сахарный диабет. — 2019. — Т. 22. — №1S1. — C. 1-144. [Dedov II, Shestakova MV, Mayorov AY, et al. Standards of specialized diabetes care. Ed. by Dedov II, Shestakova MV, Mayorov AY. 9th ed. Diabetes mellitus. 2019;22(1S1):1-121. (In Russ.)] doi: https://doi.org/10.14341/dm221s1
2. Rosenbloom AL, Silverstein JH. Connective Tissue and Joint Disease in Diabetes Mellitus. Endocrinol Metab Clin North Am. 1996;25(2):473-483. doi: https://doi.org/10.1016/s0889-8529(05)70335-2
3. Lundbaek K. Stiff hands n long-term diabetes. Acta Med Scand. 1957;158(6):447-451. doi: https://doi.org/10.1111/j.0954-6820.1957.tb15511.x
4. Rosenbloom AL, Grgic A, Frias JL. Diabetes Mellitus, Short Stature and Joint Stiffness — a New Syndrome. Pediatr Res. 1974;8(4):441-441. doi: https://doi.org/10.1203/00006450-197404000-00608
5. Rosenbloom AL, Silverstein JH, Lezotte DC, et al. Limited joint mobility in childhood diabetes mellitus indicates increased risk for microvascular disease. N Engl J Med. 1981;305(4):191-194. doi: https://doi.org/10.1056/NEJM198107233050403
6. Rosenbloom AL. Skeletal and Joint Manifestations of Childhood Diabetes. Pediatr Clin North Am. 1984;31(3):569-589. doi: https://doi.org/10.1016/s0031-3955(16)34607-7
7. Smith LL, Burnet SP, McNeil JD. Musculoskeletal manifestations of diabetes mellitus. Br J Sports Med. 2003;37(1):30-35. doi: https://doi.org/10.1136/bjsm.37.1.30
8. Jennings AM, Milner PC, Ward JD. Hand abnormalities are associated with the complications of diabetes in type 2 diabetes. Diabet Med. 1989;6(1):43-47. doi: https://doi.org/10.1111/j.1464-5491.1989.tb01137.x
9. Gamstedt A, Holm-Glad J, Ohlson CG, Sundstrom M. Hand abnormalities are strongly associated with the duration of diabetes mellitus. J Intern Med. 1993;234(2):189-193. doi: https://doi.org/10.1111/j.1365-2796.1993.tb00729.x
10. Sukenik S, Weitzman S, Buskila D, et al. Limited joint mobility and other rheumatological manifestations in diabetic patients. Diabete Metab. 1987;13(3):187-192.
11. Arkkila PET, Kantola IM, Viikari JSA. Limited Joint Mobility in Non–Insulin-Dependent Diabetic (NIDDM) Patients: Correlation to Control of Diabetes, Atherosclerotic Vascular Disease, and Other Diabetic Complications. J Diabetes Complications. 1997;11(4):208-217. doi: https://doi.org/10.1016/s1056-8727(96)00038-4
12. Паневин Т.С., Алекперов Р.Т., Мельниченко Г.А. Синдром Рейно в практике эндокринолога // Ожирение и метаболизм. — 2019. — Т. 16. — №4. — С.37-45 [Panevin TS, Alekperov RT, Melnichenko GA. Raynaud’s phenomenon in the endocrinologist’s practice. Obesity and metabolism. 2019;16(4):37-45 (in press). (In Russ.)] doi: https://doi.org/10.14341/omet10245
13. Sauseng S, Kästenbauer T, Irsigler K. Limited joint mobility in selected hand and foot joints in patients with type 1 diabetes mellitus: a methodology comparison. Diabetes Nutr Metab. 2002;15(1):1-6.
14. Starkman HS, Gleason RE, Rand LI, et al. Limited joint mobility (LJM) of the hand in patients with diabetes mellitus: relation to chronic complications. Ann Rheum Dis. 1986;45(2):130-135. doi: https://doi.org/10.1136/ard.45.2.130
15. Abate M, Schiavone C, Pelotti P, Salini V. Limited joint mobility in diabetes and ageing: recent advances in pathogenesis and therapy. Int J Immunopathol Pharmacol. 2010;23(4):997-1003. doi: https://doi.org/10.1177/039463201002300404
16. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195-214. doi: https://doi.org/10.1007/s00198-009-1066-z
17. Vazzana N, Santilli F, Cuccurullo C, Davi G. Soluble forms of RAGE in internal medicine. Intern Emerg Med. 2009;4(5):389-401. doi: https://doi.org/10.1007/s11739-009-0300-1
18. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597-605. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.621854
19. Florys B, Głowin´ska B, Urban M, Peczyn´ska J. Metalloproteinases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 levels in children and adolescents with type 1 diabetes. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2006;12(3):184-189.
20. Wang SH, Sun ZL, Guo YJ, et al. PPARgamma-mediated advanced glycation end products regulation of neural stem cells. Mol Cell Endocrinol. 2009;307(1-2):176-184. doi: https://doi.org/10.1016/j.mce.2009.02.012
21. Oliva F, Via AG, Maffulli N. Physiopathology of intratendinous calcific deposition. BMC Med. 2012;10:95. doi: https://doi.org/10.1186/1741-7015-10-95
22. Rui YF, Lui PP, Chan LS, et al. Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? Chin Med J (Engl). 2011;124(4):606-610. doi: https://doi.org/10.3760/cma.j.issn.0366-6999.2011.04.022
23. Abate M, Schiavone C, Salini S. Neoangiogenesis is reduced in chronic tendinopathies of type 2 diabetic patients. Int J Immunopathol Pharmacol. 2012;25(3):757-761. doi: https://doi.org/10.1177/039463201202500322
24. Мокрышева Н.Г., Еремкина А.К., Мирная С.С., и др. Патологические изменения в суставах и мышцах при первичном гиперпаратиреозе // Остеопороз и остеопатии. — 2018. — Т. 21. — №4. — C. 10-18. [Mokrysheva NG, Eremkina AK, Mirnaya SS, et al. Joint and muscle involvement in primary hyperparathyroidism. Osteoporosis and Bone Diseases. 2018;(21)4:10-18. (In Russ.)] doi: https://doi.org/10.14341/osteo9783
25. Berry PA, Jones SW, Cicuttini FM, et al. Temporal relationship between serum adipokines, biomarkers of bone and cartilage turnover, and cartilage volume loss in a population with clinical knee osteoarthritis. Arthritis Rheum. 2011;63(3):700-707. doi: https://doi.org/10.1002/art.30182
26. Bakker K, Apelqvist J, Lipsky BA, et al. The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes: development of an evidence-based global consensus. Diabetes Metab Res Rev. 2016;32 Suppl 1:2-6. doi: https://doi.org/10.1002/dmrr.2694
27. Francia P, Seghieri G, Gulisano M, et al. The role of joint mobility in evaluating and monitoring the risk of diabetic foot ulcer. Diabetes Res Clin Pract. 2015;108(3):398-404. doi: https://doi.org/10.1016/j.diabres.2015.04.001
28. Masson EA, Hay EM, Stockley I, et al. Abnormal foot pressures alone may not cause ulceration. Diabet Med. 1989;6(5):426-428. doi: https://doi.org/10.1111/j.1464-5491.1989.tb01198.x
29. Fernando DJ, Masson EA, Veves A, Boulton AJ. Relationship of limited joint mobility to abnormal foot pressures and diabetic foot ulceration. Diabetes Care. 1991;14(1):8-11. doi: https://doi.org/10.2337/diacare.14.1.8
30. Catterall RC, Martin MM, Oakley W. Aetiology and management of lesions of the feet in diabetes. Br Med J. 1956;2(4999):953-957. doi: https://doi.org/10.1136/bmj.2.4999.953
31. Delbridge L, Ctercteko G, Fowler C, et al. The aetiology of diabetic neuropathic ulceration of the foot. Br J Surg. 1985;72(1):1-6. doi: https://doi.org/10.1002/bjs.1800720102
32. Birke JA, Cornwall MW, Jackson M. Relationship between Hallux Limitus and Ulceration of the Great Toe. J Orthop Sports Phys Ther. 1988;10(5):172-176. doi: https/doi.org/10.2519/jospt.1988.10.5.172
33. Delbridge L, Perry P, Marr S, et al. Limited joint mobility in the diabetic foot: relationship to neuropathic ulceration. Diabet Med. 1988;5(4):333-337. doi: https://doi.org/10.1111/j.1464-5491.1988.tb01000.x
34. Giacomozzi C, D’Ambrogi E, Uccioli L, Macellari V. Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin Biomech (Bristol, Avon). 2005;20(5):532-539. doi: https://doi.org/10.1016/j.clinbiomech.2005.01.011
35. Cheuy VA, Hastings MK, Commean PK, Mueller MJ. Muscle and Joint Factors Associated With Forefoot Deformity in the Diabetic Neuropathic Foot. Foot Ankle Int. 2016;37(5):514-521. doi: https://doi.org/10.1177/1071100715621544
36. Mueller MJ, Minor SD, Sahrmann SA, et al. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls. Phys Ther. 1994;74(4):299-308; discussion 309-213. doi: https://doi.org/10.1093/ptj/74.4.299
37. Searle A, Spink MJ, Ho A, Chuter VH. Association between ankle equinus and plantar pressures in people with diabetes. A systematic review and meta-analysis. Clin Biomech (Bristol, Avon). 2017;43:8-14. doi: https://doi.org/10.1016/j.clinbiomech.2017.01.021
38. Lavery LA, Armstrong DG, Boulton AJ, Diabetex Research G. Ankle equinus deformity and its relationship to high plantar pressure in a large population with diabetes mellitus. J Am Podiatr Med Assoc. 2002;92(9):479-482. doi: https://doi.org/10.7547/87507315-92-9-479
39. Holewski JJ, Moss KM, Stess RM, et al. Prevalence of foot pathology and lower extremity complications in a diabetic outpatient clinic. J Rehabil Res Dev. 1989;26(3):35-44
40. van Schie CH, Vermigli C, Carrington AL, Boulton A. Muscle weakness and foot deformities in diabetes: relationship to neuropathy and foot ulceration in caucasian diabetic men. Diabetes Care. 2004;27(7):1668-1673. doi: https://doi.org/10.2337/diacare.27.7.1668
41. Hilton TN, Tuttle LJ, Bohnert KL, et al. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther. 2008;88(11):1336-1344. doi: https://doi.org/10.2522/ptj.20080079
42. Zimny S, Schatz H, Pfohl M. The role of limited joint mobility in diabetic patients with an at-risk foot. Diabetes Care. 2004;27(4):942-946. doi: https://doi.org/10.2337/diacare.27.4.942
43. Hicks J. The mechanics of the foot, II. The plantar aponeurosis and the arch. J Anat. 1954;88(1):25-30.
44. Walters DP, Gatling W, Mullee MA, Hill RD. The distribution and severity of diabetic foot disease: a community study with comparison to a non-diabetic group. Diabet Med. 1992;9(4):354-358. doi: https://doi.org/10.1111/j.1464-5491.1992.tb01796.x
45. Melling M, Reihsner R, Pfeiler W, et al. Comparison of palmar aponeuroses from individuals with diabetes Mellitus and Dupuytren’s contracture. Anat Rec. 1999;255(4):401-406. doi: https://doi.org/10.1002/(sici)1097-0185(19990801)255:4<401::aid-ar6>3.0.co;2-d
46. Duffin AC, Lam A, Kidd R, et al. Ultrasonography of plantar soft tissues thickness in young people with diabetes. Diabet Med. 2002;19(12):1009-1013. doi: https://doi.org/10.1046/j.1464-5491.2002.00850.x
47. Francia P, Anichini R, Seghieri G, et al. History, Prevalence and Assessment of Limited Joint Mobility, from Stiff Hand Syndrome to Diabetic Foot Ulcer Prevention: A Narrative Review of the Literature. Curr Diabetes Rev. 2018;14(5):411-426. doi: https://doi.org/10.2174/1573399813666170816142731
48. Ramchurn N, Mashamba C, Leitch E, et al. Upper limb musculoskeletal abnormalities and poor metabolic control in diabetes. Eur J Intern Med. 2009;20(7):718-721. doi: https://doi.org/10.1016/j.ejim.2009.08.001
49. Francia P, Gulisano M, Anichini R, Seghieri G. Diabetic foot and exercise therapy: step by step the role of rigid posture and biomechanics treatment. Curr Diabetes Rev. 2014;10(2):86-99. doi: https://doi.org/10.2174/1573399810666140507112536
50. Joslin EP. The Menace of Diabetic Gangrene. N Engl J Med. 1934;211(1):16-20. doi: https://doi.org/10.1056/nejm193407052110103
51. Birke JA, Cornwall MW, Jackson M. Relationship between Hallux Limitus and Ulceration of the Great Toe. J Orthop Sports Phys Ther. 1988;10(5):172-176. doi: https://doi.org/10.2519/jospt.1988.10.5.172
52. Brand PW. Mechanical Factors in Joint Stiffness and Tissue Growth. J Hand Ther. 1995;8(2):91-96. doi: https://doi.org/10.1016/s0894-1130(12)80305-x
53. Francia P, Anichini R, Seghieri G, et al. History, Prevalence and Assessment of Limited Joint Mobility, from Stiff Hand Syndrome to Diabetic Foot Ulcer Prevention: A Narrative Review of the Literature. Curr Diabetes Rev. 2018;14(5):411-426. doi: https://doi.org/10.2174/1573399813666170816142731
54. Dijs HM, Roofthooft JM, Driessens MF, et al. Effect of physical therapy on limited joint mobility in the diabetic foot. A pilot study. J Am Podiatr Med Assoc. 2000;90(3):126-132. doi: https://doi.org/10.7547/87507315-90-3-126
55. Lawall H, Diehm C. Diabetic foot syndrome from the perspective of angiology and diabetology. Orthopade. 2009;38(12):1149-1159. doi: https://doi.org/10.1007/s00132-009-1501-z
56. Горохов С.В., Удовиченко О.В., Галстян Г.Р., и др. Внутриобувная компьютерная педобарография как новый метод оценки эффективности ортопедической обуви у больных сахарным диабетом. // Сахарный диабет. — 2009. — Т. 12.— №4. — C. 81-85. [Gorokhov SV, Udovichenko OV, Galstyan GR, et al. In-shoe computed pedobarography as a new method for the assessment of efficiency of orthopedic footwear in diabetic patients. Diabetes mellitus. 2009;12(4):81-85. (In Russ.)] doi: http://doi.org/10.14341/2072-0351-5710
57. Kim JB, Song BW, Park S, et al. Alagebrium chloride, a novel advanced glycation end-product cross linkage breaker, inhibits neointimal proliferation in a diabetic rat carotid balloon injury model. Korean Circ J. 2010;40(10):520-526. doi: https://doi.org/10.4070/kcj.2010.40.10.520
58. Engelen L, Stehouwer CD, Schalkwijk CG. Current therapeutic interventions in the glycation pathway: evidence from clinical studies. Diabetes Obes Metab. 2013;15(8):677-689. doi: https://doi.org/10.1111/dom.12058
59. Hudson BI, Bucciarelli LG, Wendt T, et al. Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys. 2003;419(1):80-88. doi: https://doi.org/10.1016/j.abb.2003.08.030
Supplementary files
|
1. Fig. 1. Rheumatic diseases associated with diabetes | |
Subject | ||
Type | Other | |
View
(255KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. The effect of OPS on the development of foot ulcers. MMP - matrix metalloproteinases; PPAR - gamma receptors activated by peroxisome proliferators; RAGE - receptors for the final products of glycation; NF-κB is the nuclear factor κB. | |
Subject | ||
Type | Other | |
View
(320KB)
|
Indexing metadata ▾ |
Review
For citations:
Panevin T.S., Alekseeva L.I., Taskina E.A., Kashevarova N.G. Limited joint mobility syndrome as a predictor of the diabetic foot syndrome. Osteoporosis and Bone Diseases. 2019;22(3):19-26. (In Russ.) https://doi.org/10.14341/osteo12280

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).