Preview

Osteoporosis and Bone Diseases

Advanced search

Parathyroid hormone-independent hypercalcemia and hypercalciuria of a patient with nephrolithiasis and nephrocalcinosis and impaired vitamin D metabolism due to a defect in the CYP24A1 gene

https://doi.org/10.14341/osteo12920

Abstract

Hypercalcemia associated with impaired vitamin D metabolism is a rare autosomal recessive disorder. The mechanism of this pathology is the impairment of inactivation of active metabolites of vitamin D because of mutations in the CYP24A1 gene, which leads to an increase of calcium absorption and the development of hypercalcemia, hypercalciuria, nephrocalcinosis and nephrolithiasis. The phenotype of the disease ranges from severe forms which are diagnosed in early infancy (severe hypercalcemia associated with dehydration, vomiting, nephrocalcinosis, and sometimes death) to milder forms, that often are diagnosed in adulthood and manifested with recurrent nephrolithiasis and nephrocalcinosis. Differential diagnosis is carried out with the most common causes of hypercalcemia: primary hyperparathyroidism and malignant neoplasms. To diagnose, the determination of vitamin D metabolites and genetic research are used. As a treatment for mild forms, it is recommended to limit dairy products, to keep a drinking regimen, to refuse taking vitamin D and calcium preparations, and use of sunscreens. The article presents a clinical case of parathyroid hormone-independent hypercalcemia due to mutation of the CYP24A1 gene of a 20-year-old patient suffering from nephrolithiasis and nephrocalcinosis since the age of 16 with a confirmed violation of vitamin D metabolism.

About the Authors

L. Ya. Rozhinskaya
Endocrinology Research Centre
Russian Federation

Liudmila Ya. Rozhinskaya, MD, PhD, Professor. eLibrary SPIN: 5691-7775

11 Dm. Ulyanova street, 117036 Moscow



A. S. Pushkareva
Endocrinology Research Centre
Russian Federation

Anastasiia S. Pushkareva, resident

Moscow



E. O. Mamedova
Endocrinology Research Centre
Russian Federation

Elizaveta O. Mamedova, MD, Phd. eLibrary SPIN 3904-6017

Moscow



V. P. Bogdanov
Endocrinology Research Centre
Russian Federation

Victor P. Bogdanov. eLibrary SPIN: 9956-8495

Moscow



V. V. Zakharova
Endocrinology Research Centre
Russian Federation

Victoria V. Zakharova. eLibrary SPIN 1491-2770

Moscow



V. A. Ioutsi
Endocrinology Research Centre
Russian Federation

Vitaly A. Ioutsi, PhD. Researcher ID: C-3158-2014. eLibrary SPIN: 9734-0997

Moscow



Zh. E. Belaya
Endocrinology Research Centre
Russian Federation

Zhanna E. Belaya, MD, PhD, Professor. eLibrary SPIN: 4746-7173

Moscow



G. A. Melnichenko
Endocrinology Research Centre
Russian Federation

Galina A. Melnichenko MD, PhD, Professor. eLibrary SPIN 8615-0038

Moscow



References

1. Cappellani D, Brancatella A, Kaufmann M, et al. Hereditary Hypercalcemia Caused by a Homozygous Pathogenic Variant in the CYP24A1 Gene: A Case Report and Review of the Literature. Case Rep Endocrinol. 2019;2019:1-7. https://doi.org/10.1155/2019/4982621

2. Marcocci C, Cetani F. Primary Hyperparathyroidism. N Engl J Med. 2011;365(25):2389-2397. https://doi.org/10.1056/NEJMcp1106636

3. Fisken RA, Heath DA, Bold AM. Hypercalcaemia — A Hospital Survey. QJM An Int J Med. 1980;49:405-418. https://doi.org/10.1093/oxfordjournals.qjmed.a067631

4. Jacobs TP, Kaufman M., Jones G, et al. A Lifetime of Hypercalcemia and Hypercalciuria, Finally Explained. Clinical Endocrinology and Metabolism. 2014;99(3):708-712. https://doi.org/10.1210/jc.2013-3802

5. Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. The New England Journal of Medicine. 2011;365(5):410-421. https://doi.org/10.1056/nejmoa1103864

6. Lightwood R, Stapleton T. Idiopathic hypercalcaemia in infants. Lancet. 1953;265:255-256.

7. Nguyen M, Boutignon H, Mallet E, et al. Infantile Hypercalcemia and Hypercalciuria: New Insights into a Vitamin D-Dependent Mechanism and Response to Ketoconazole Treatment. J Pediatr. 2010;157(2):296-302. https://doi.org/10.1016/j.jpeds.2010.02.025

8. O’Keeffe DT, Tebben PJ, Kumar R, et al. Clinical and biochemical phenotypes of adults with monoallelic and biallelic CYP24A1 mutations: evidence of gene dose effect. Osteoporos Int. 2016;27(10):3121-3125. https://doi.org/10.1007/s00198-016-3615-6

9. Pronicka E, Ciara E, Halat P, et al. Biallelic mutations in CYP24A1 or SLC34A1 as a cause of infantile idiopathic hypercalcemia (IIH) with vitamin D hypersensitivity: molecular study of 11 historical IIH cases. J Appl Genet. 2017;58(3):349-353. https://doi.org/10.1007/s13353-017-0397-2

10. Endres DB. Investigation of hypercalcemia. Clin Biochem. 2012;45(12):954-963. https://doi.org/10.1016/j.clinbiochem.2012.04.025

11. Stewart AF. Hypercalcemia Associated with Cancer. N Engl J Med. 2005;352(4):373-379. https://doi.org/10.1056/NEJMcp042806

12. Semenova A.I., Hypercalcemia and Tumor Disintegration Syndrome. Practical Oncology. 2006;7(2):101-107. (In Russ.)

13. Jacobs TP, Bilezikian JP. Rare Causes of Hypercalcemia. J Clin Endocrinol Metab. 2005;90(11):6316-6322. https://doi.org/10.1210/jc.2005-0675

14. Kallas M, Green F, Hewison M, et al. Rare Causes of Calcitriol-Mediated Hypercalcemia: A Case Report and Literature Review. J Clin Endocrinol Metab. 2010;95(7):3111-3117. https://doi.org/10.1210/jc.2009-2673

15. Carpenter TO. CYP24A1 loss of function: Clinical phenotype of monoallelic and biallelic mutations. J Steroid Biochem Mol Biol. 2017;173:337-340. https://doi.org/10.1016/j.jsbmb.2017.01.006

16. Hahn CN, Baker E, Laslo P, et al. Localization of the human vitamin D 24-hydroxylase gene (CYP24) to chromosome 20q13.2— >q13.3. Cytogenetics and Cell Genetics. 1993;62(4):192-193. https://doi.org/10.1159/00013347

17. Jiráčková J, Hyšpler R, Alkanderi S, et al. Novel CYP24A1 Mutation in a Young Male Patient with Nephrolithiasis: Case Report. Kidney Blood Press Res. 2019;44(4):870-877. https://doi.org/10.1159/000500922

18. DeLuca HF. Vitamin D: the vitamin and the hormone. Federation Proceedings. 1974;33(11):2221-2219.

19. Nesterova G, Malicdan MC, Yasuda K, et al. 1,25-(OH) 2 D-24 Hydroxylase (CYP24A1) Deficiency as a Cause of Nephrolithiasis. Clin J Am Soc Nephrol. 2013;8(4):649-657. https://doi.org/10.2215/CJN.05360512

20. Dinour D, Beckerman P, Ganon L, et al. Loss-of-Function Mutations of CYP24A1, the Vitamin D 24-Hydroxylase Gene, Cause Long-standing Hypercalciuric Nephrolithiasis and Nephrocalcinosis. J Urol. 2013;190(2):552-557. https://doi.org/10.1016/j.juro.2013.02.3188

21. Sayers J, Hynes A, Rice S, et al. Searching for CYP24A1 mutations in cohorts of patients with calcium nephrolithiasis. OA Nephrol. 2013;1(1). https://doi.org/10.13172/2053-0293-1-1-525

22. Tikhonovich YuV, Kolodkina AA, Kulikova KS, et al. Idiopathic infantile hypercalcemia. Description of clinical cases and review. Problems of Endocrinology. 2017;63(1):51-57. (In Russ.) https://doi.org/10.14341/probl201763151

23. Ferraro PM, Minucci A, Primiano A, et al. A novel CYP24A1 genotype associated to a clinical picture of hypercalcemia, nephrolithiasis and low bone mass. Urolithiasis. 2017;45(3):291-294. https://doi.org/10.1007/s00240-016-0923-4

24. Ahmad S, Kuraganti G, Steenkamp D. Hypercalcemic crisis: a clinical review. The Americal Jоurnal of medicine. 2015;128(3):239-234. https://doi.org/10.1016/j.amjmed.2014.09.030

25. Ralston SH, Alzaid AA, Gardner MD, et al. Treatment of cancer associated hypercalcaemia with combined aminohydroxypropylidene diphosphonate and calcitonin. British medical Journal. 1986;292(6535):1549-1550. https://doi.org/10.1136/bmj.292.6535.1549

26. Thiebaud D, Jacquet AF, Burckhardt P. Fast and effective treatment of malignant hypercalcemia. Combination of suppositories of calcitonin and a single infusion of 3-amino 1hydroxypropylidene-1-bisphosphonate. Archives of Internal Medicine. 1990;150(10):2125-2128. https://doi.org/10.1001/archinte.1990.00390210095021

27. Colussi G, Ganon L, Penco S, et al. Chronic hypercalcaemia from inactivating mutations of vitamin D 24-hydroxylase (CYP24A1): implications for mineral metabolism changes in chronic renal failure. Nephrol Dial Transplant. 2014;29(3):636-643. https://doi.org/10.1093/ndt/gft460

28. St-Arnaud R. CYP24A1-deficient mice as a tool to uncover a biological activity for vitamin D metabolites hydroxylated at position 24. J Steroid Biochem Mol Biol. 2010;121(1-2):254-256. https://doi.org/10.1016/j.jsbmb.2010.02.002

29. Tebben PJ, Milliner DS, Horst RL, et al. Hypercalcemia, Hypercalciuria, and Elevated Calcitriol Concentrations with Autosomal Dominant Transmission Due to CYP24A1 Mutations: Effects of Ketoconazole Therapy. J Clin Endocrinol Metab. 2012;97(3):E423-E427. https://doi.org/10.1210/jc.2011-1935

30. Nguyen M, Boutignon H, Mallet E, et al. Infantile Hypercalcemia and Hypercalciuria: New Insights into a Vitamin D-Dependent Mechanism and Response to Ketoconazole Treatment. J Pediatr. 2010;157(2):296-302. https://doi.org/10.1016/j.jpeds.2010.02.025

31. Sayers J, Hynes AM, Srivastava S, et al. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole: Fig. 1. Clin Kidney J. 2015;8(4):453-455. https://doi.org/10.1093/ckj/sfv028

32. Hawkes CP, Li D, Hakonarson H, Meyers KE, et al. CYP3A4 Induction by Rifampin: An Alternative Pathway for Vitamin D Inactivation in Patients With CYP24A1 Mutations. J Clin Endocrinol Metab. 2017;102(5):1440-1446. https://doi.org/10.1210/jc.2016-4048

33. Jones G, Kottler ML, Schlingmann KP. Genetic Diseases of Vitamin D Metabolizing Enzymes. Endocrinol Metab Clin North Am. 2017;46(4):1095-1117. https://doi.org/10.1016/j.ecl.2017.07.011


Review

For citations:


Rozhinskaya L.Ya., Pushkareva A.S., Mamedova E.O., Bogdanov V.P., Zakharova V.V., Ioutsi V.A., Belaya Zh.E., Melnichenko G.A. Parathyroid hormone-independent hypercalcemia and hypercalciuria of a patient with nephrolithiasis and nephrocalcinosis and impaired vitamin D metabolism due to a defect in the CYP24A1 gene. Osteoporosis and Bone Diseases. 2021;24(1):26-33. (In Russ.) https://doi.org/10.14341/osteo12920

Views: 7173


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)