The role of the calcium-sensing receptor in the regulation of parathyroid hormone secretion in physiology and in calcitropic diseases
https://doi.org/10.14341/osteo13142
Abstract
Parathyroid hormone (PTH) plays a key role in the regulation of calcium-phosphate metabolism. The secretion of PTH is regulated by calcium-sensing receptor (CaSR), which primarily expressed in the parathyroid glands and the renal tubules of the kidney. Increase of calcium concentration in extracellular matrix of cells is causing activation of the CaSR. Activated CaSR inhibits secretion of PTH and increases urinary calcium excretion. All CaSR effects leads to prevent development of hypercalcemia complications. Downregulation of the CASR expression and/or altered CaSR functioning leads to dysregulation of PTH synthesis. It may be the underlying cause of the development of primary and secondary hyperparathyroidism, as well as a number of hereditary diseases associated with loss- and gain-of-function mutations of the CaSR. In this paper we discusses the function of the CaSR in physiology and also the potential mechanisms that can impaired CaSR-induced signaling in various calcitropic diseases.
About the Authors
D. A. MarmalyukRussian Federation
Darya A. Marmalyuk - resident.
8–2 Trubetskaya street, 119991 Moscow
Competing Interests:
None
G. E. Runova
Russian Federation
Gyuzel E. Runova - MD, PhD.
Moscow
Competing Interests:
None
V. V. Fadeyev
Russian Federation
Valentin V. Fadeyev - MD, ScD, Professor.
Moscow
Competing Interests:
None
References
1. Sundararaman SS, van der Vorst EPC. Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. Int J Mol Sci. 2021;22(5):2478. doi: https://doi.org/10.3390/ijms22052478
2. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239-297. doi: https://doi.org/10.1152/physrev.2001.81.1.239
3. Mirnaya SS, Pigarova EA, Belyaeva AV et al. The role of the calcium-sensing receptor in maintaining the calcium homeostasis system. Osteoporosis and Bone Diseases. 2010;13(3):32-36. (In Russ.). doi: https://doi.org/10.14341/osteo2010332-36
4. Barahona MJ, Maina RM, Lysyy T, et al. Activation of the Calcium Sensing Receptor Decreases Secretagogue-Induced Fluid Secretion in the Rat Small Intestine. Front Physiol. 2019;10:439. doi: https://doi.org/10.3389/fphys.2019.00439
5. Ruat M, Traiffort E. Roles of the calcium sensing receptor in the central nervous system. Best Pract Res Clin Endocrinol Metab. 2013;27(3):429-442. doi: https://doi.org/10.1016/j.beem.2013.03.001
6. Schepelmann M, Yarova PL, Lopez-Fernandez I, et al. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. Am J Physiol Cell Physiol. 2016;310(3):C193-C204. doi: https://doi.org/10.1152/ajpcell.00248.2015
7. Minisola S, Arnold A, Belaya Z, et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J Bone Miner Res. 2022;37(11):2315-2329. doi: https://doi.org/10.1002/jbmr.4665
8. Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab. 2013;27(3):315-331. doi: https://doi.org/10.1016/j.beem.2013.05.010
9. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 2003;4(7):530-538. doi: https://doi.org/10.1038/nrm1154
10. Sato T, Courbebaisse M, Ide N, et al. Parathyroid hormone controls paracellular Ca2+ transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proc Natl Acad Sci USA. 2017;114(16):E3344-E3353. doi: https://doi.org/10.1073/pnas.1616733114
11. Toka HR, Al-Romaih K, Koshy JM, et al. Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria. J Am Soc Nephrol. 2012;23(11):1879-1890. doi: https://doi.org/10.1681/ASN.2012030323
12. Ba J, Brown D, Friedman PA. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol. 2003;285(6):F1233-F1243. doi: https://doi.org/10.1152/ajprenal.00249.2003
13. Chang W, Tu C, Chen TH, et al. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal. 2008;1(35). doi: https://doi.org/10.1126/scisignal.1159945
14. Hannan FM, Kallay E, Chang W, et al. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2018;15(1):33-51. doi: https://doi.org/10.1038/s41574-018-0115-0
15. Pearce SH, Brown EM. Calcium-sensing receptor mutations: insights into a structurally and functionally novel receptor. J Clin Endocrinol Metab. 1996;81(4):1309-1311. doi: https://doi.org/10.1210/jcem.81.4.8636322
16. Singh P, Bhadada SK, Dahiya D, et al. Reduced Calcium Sensing Receptor (CaSR) Expression Is Epigenetically Deregulated in Parathyroid Adenomas. J Clin Endocrinol Metab. 2020;105(9):3015-3024. doi: https://doi.org/10.1210/clinem/dgaa419
17. Wang XM, Wu YW, Li ZJ, et al. Polymorphisms of CASR gene increase the risk of primary hyperparathyroidism. J Endocrinol Invest. 2016;39(6):617-625. doi: https://doi.org/10.1007/s40618-015-0405-5
18. Brown AJ, Zhong M, Finch J, et al. Rat calcium-sensing receptor is regulated by vitamin D but not by calcium. Am J Physiol. 1996;270(3 Pt 2):F454-F460. doi: https://doi.org/10.1152/ajprenal.1996.270.3.F454
19. Varshney S, Bhadada SK, Saikia UN, et al. Simultaneous expression analysis of vitamin D receptor, calcium-sensing receptor, cyclin D1, and PTH in symptomatic primary hyperparathyroidism in Asian Indians. Eur J Endocrinol. 2013;169(1):109-116. doi: https://doi.org/10.1530/EJE-13-0085
20. Ilyicheva EA, Shurygina IA, Dremina NN, et al. The role of calcium sensitive and vitamin D receptors in the pathogenesis of sporadic multiple parathyroid gland disease. Problems of Endocrinology. 2023;69(3):24-34. (In Russ.). doi: https://doi.org/10.14341/probl13207
21. Koh J, Zhang R, Roman S, et al. Ex Vivo Intact Tissue Analysis Reveals Alternative Calcium-sensing Behaviors in Parathyroid Adenomas. J Clin Endocrinol Metab. 2021;106(11):3168-3183. doi: https://doi.org/10.1210/clinem/dgab524
22. Koh J, Dar M, Untch BR, et al. Regulator of G protein signaling 5 is highly expressed in parathyroid tumors and inhibits signaling by the calcium-sensing receptor. Mol Endocrinol. 2011;25(5):867-876. doi: https://doi.org/10.1210/me.2010-0277
23. Balenga N, Koh J, Azimzadeh P, et al. Parathyroid-Targeted Overexpression of Regulator of G-Protein Signaling 5 (RGS5) Causes Hyperparathyroidism in Transgenic Mice. J Bone Miner Res. 2019;34(5):955-963. doi: https://doi.org/10.1002/jbmr.3674
24. Balenga N, Azimzadeh P, Hogue JA, et al. Orphan adhesion GPCR GPR64/ADGRG2 is overexpressed in parathyroid tumors and attenuates calcium-sensing receptor-mediated signaling. J Bone Miner Res. 2017;32(3):654-666. doi: https://doi.org/10.1002/jbmr.3023
25. Olauson H, Lindberg K, Amin R, et al. Parathyroidspecific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 2013;9(12):e1003975. doi: https://doi.org/10.1371/journal.pgen.1003975
26. Xiang Z, Wang M, Miao C, Jin D, Wang H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharmacol. 2022;13:1020858. doi: https://doi.org/10.3389/fphar.2022.1020858
27. Campion KL, McCormick WD, Warwicker J, et al. Pathophysiologic changes in extracellular pH modulate parathyroid calcium-sensing receptor activity and scretion via a histidine-independent mechanism. J Am Soc Nephrol. 2015;26(9):2163-2171. doi: https://doi.org/10.1681/ASN.2014070653
28. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770-774. doi: https://doi.org/10.1038/nature05315
29. Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195(1):125-131. doi: https://doi.org/10.1677/JOE-07-0267
30. Ilin AV, Arbuzova MI. Fibroblast growth factor 23 and Klotho protein in the pathogenesis of secondary hyperparathyroidism. Osteoporosis and Bone Diseases. 2013;16(3):20-27. (In Russ.). doi: https://doi.org/10.14341/osteo2013320-27
31. Arnold A, Brown MF, Urena P, et al. Monoclonality of parathyroid tumors in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest. 1995;95(5):2047-2053. doi: https://doi.org/10.1172/JCI117890
32. Centeno PP, Herberger A, Mun HC, et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun. 2019;10(1):4693. doi:10.1038/s41467-019-12399-9
33. Baradaran A. Relationship between Klotho and parathormone. J Parathyr Dis. 2023;11:e11230. doi: https://doi.org/10.34172/jpd.2023.11230
34. Fan Y, Liu W, Bi R, et al. Interrelated role of Klotho and calcium-sensing receptor in parathyroid hormone synthesis and parathyroid hyperplasia. Proc Natl Acad Sci USA. 2018;115(16):E3749-E3758. doi: https://doi.org/10.1073/pnas.1717754115
35. Lee JY, Shoback DM. Familial hypocalciuric hypercalcemia and related disorders. Best Pract Res Clin Endocrinol Metab. 2018;32(5):609-619. doi: https://doi.org/10.1016/j.beem.2018.05.004
36. Sadacharan D, Mahadevan S, Rao SS, et al. Neonatal Severe Primary Hyperparathyroidism: A Series of Four Cases and their Long-term Management in India. Indian J Endocrinol Metab. 2020;24(2):196-201. doi: https://doi.org/10.4103/ijem.IJEM_53_20
37. Fisher MM, Cabrera SM, Imel EA. Successful treatment of neonatal severe hyperparathyroidism with cinacalcet in two patients. Endocrinol Diabetes Metab Case Rep. 2015;2015:150040. doi: https://doi.org/10.1530/EDM-15-0040
38. Cristina EV, Alberto F. Management of familial hyperparathyroidism syndromes: MEN1, MEN2, MEN4, HPT-Jaw tumour, Familial isolated hyperparathyroidism, FHH, and neonatal severe hyperparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32(6):861-875. doi: https://doi.org/10.1016/j.beem.2018.09.010
39. Gorbacheva AM, Eremkina AK, Mokrysheva NG. Hereditary syndromal and nonsyndromal forms of primary hyperparathyroidism. Problems of Endocrinology. 2020;66(1):23-34. (In Russ.). doi: https://doi.org/10.14341/probl10357
40. Roszko KL, Bi RD, Mannstadt M. Autosomal Dominant Hypocalcemia (Hypoparathyroidism) Types 1 and 2. Front Physiol. 2016;7:458. doi: https://doi.org/10.3389/fphys.2016.00458
41. Mrad FCC, Soares SBM, de Menezes Silva LAW, et al. Bartter's syndrome: clinical findings, genetic causes and therapeutic approach. World J Pediatr. 2021;17(1):31-39. doi: https://doi.org/10.1007/s12519-020-00370-4
42. Runova GE, Golounina OO, Glinkina IV6 et al. Differential diagnosis of normocalcemic hyperparathyroidism and idiopathic hypercalciuria on the example of clinical case. Problems of Endocrinology. 2020;66(6):13-17. (In Russ.). doi: https://doi.org/10.14341/probl12677
43. Worcester EM, Coe FL. New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol. 2008;28(2):120-132. doi: https://doi.org/10.1016/j.semnephrol.2008.01.005
44. Garda Nieto VM, Luis Yanes MI, Tejera Carreno P, et al. The idiopathic hypercalciuria reviewed. Metabolic abnormality or disease? Nefrologia (Engl Ed). 2019;39(6):592-602. doi: https://doi.org/10.1016/j.nefro.2019.02.011
45. Golodnikov II, Pavlova ZSh, Kamalov AA, Savilov AV. Calcium-sensing receptor, а-klotho and FGF21 in the development of nephrolithiasis Tekhnologii zhivykh system. 2021;18(1):32-40 (In. Rus.). doi: https://doi.org/10.18127/j20700997-202101-03
46. Vezzoli G, Tanini A, Ferrucci L, et al. Influence of calcium-sensing receptor gene on urinary calcium excretion in stoneforming patients. J Am Soc Nephrol. 2002;13(10):2517-2523. doi: https://doi.org/10.1097/01.asn.0000030077.72157.d2
47. Litvinova MM, Khafizov K, Korchagin VI, et al. Association of CASR, CALCR, and ORAI1 Genes Polymorphisms With the Calcium Urolithiasis Development in Russian Population. Front Genet. 2021;12:621049. doi: https://doi.org/10.3389/fgene.2021.621049
48. Patel YP, Pandey SN, Patel SB, et al. Haplotype of CaSR gene is associated with risk of renal stone disease in West Indian population. Urolithiasis. 2022;51(1):25. doi: https://doi.org/10.1007/s00240-022-01394-3
49. Vezzoli G, Terranegra A, Aloia A, et al. Decreased transcriptional activity of calcium-sensing receptor gene promoter 1 is associated with calcium nephrolithiasis. J Clin Endocrinol Metab. 2013;98(9):3839-3847. doi: https://doi.org/10.1210/jc.2013-1834
Supplementary files
|
1. Рисунок 1. Схематическое строение кальций-чувствительного рецептора. | |
Subject | ||
Type | Материалы исследования | |
View
(232KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Сигнальные пути, опосредованные активацией кальций-чувствительного рецептора, в клетках околощитовидных желез. | |
Subject | ||
Type | Материалы исследования | |
View
(174KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Расположение и функционирование кальций-чувствительного рецептора в а) восходящей толстой части петли Генле; б) в проксимальных канальцах почки. | |
Subject | ||
Type | Материалы исследования | |
View
(196KB)
|
Indexing metadata ▾ |
Review
For citations:
Marmalyuk D.A., Runova G.E., Fadeyev V.V. The role of the calcium-sensing receptor in the regulation of parathyroid hormone secretion in physiology and in calcitropic diseases. Osteoporosis and Bone Diseases. 2023;26(3):25-32. (In Russ.) https://doi.org/10.14341/osteo13142

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).