Surrogate markers in assessment of bisphosphonate effectiveness in osteoporosis treatment (bone mineral density, bone turnover markers)
https://doi.org/10.14341/osteo13166
Abstract
A review of the literature which summarizes our knowledge on the use of surrogate markers of the osteoporosis treatment effectiveness when on bisphosphonate (BP) therapy. Bone mineral density (BMD) and markers of bone turnover, which have been shown to be associated with the clinical fracture end point, have been used as surrogate criteria for the effectiveness of treatment of osteoporosis in randomized controlled trials. When prescribing BP for the treatment of osteoporosis, BMD measurement every 12 months by dual-energy x-ray absorptiometry (DXA) is the well-described surrogate marker of BP efficacy. At the same time, stabilization of BMD is also a criterion for the treatment effectiveness since changes in BMD determined only 16% of the anti-fracture effectiveness of BP. Markers of bone remodeling can be used as surrogate markers after 3 (bone resorption) or 6 (bone formation) months from the start of BP therapy. A decrease of 30% or more is considered to be prognostically effective for both antifracture and BMD gain. There is a direct relationship between the degree of bone remodeling markers decrease and the antifracture effectiveness of BP therapy. The decrease in markers persists throughout the entire period of therapy and, accordingly, they can be used as surrogate markers of effectiveness and adherence to BP therapy throughout the entire treatment period. However, the presence of pathological fractures is a key clinical manifestation of osteoporosis and should be considered first in every decision making compared to any surrogate marker.
Thus, when prescribing BP treatment, surrogate markers of changes in BMD and/or markers of bone remodeling can be used to monitor the effectiveness of treatment throughout the entire period of treatment and patients’ monitoring.
About the Authors
Zh. E. BelayaRussian Federation
Zhanna E. Belaya - MD, PhD.
Moscow,
Scopus Author ID 16506354000
Competing Interests:
None
L. Ya. Rozhinskaya
Russian Federation
Liudmila Ya. Rozhinskaya - MD, PhD, Professor.
Moscow
Scopus Author ID 55121221200
Competing Interests:
None
References
1. Belaya Z, Rozhinskaya L, Dedov I, et al. A summary of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis. Osteoporos Int. 2023 Mar;34(3):429-447. doi: https://doi.org/10.1007/s00198-022-06667-6
2. Белая Ж.Е., Белова К.Ю., Бирюкова Е.В., Дедов И.И. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза // Остеопороз и остеопатии. — 2021. — Т. 24. — №2. — С. 4-47. doi: https://doi.org/10.14341/osteo12930
3. Голоунина О.О., Белая Ж.Е. Бисфосфонаты: 50 лет в медицинской практике // Consilium Medicum. – 2020. – Т. 22. — №4. — С. 66-73. — doi: https://doi.org/10.26442/20751753.2020.4.200102. – EDN SWWOYB.
4. Белая Ж.Е., Рожинская Л.Я. Анаболическая терапия остеопороза. Терипапаратид: эффективность, безопасность и область применения // Остеопороз и остеопатии. — 2013. — Т. 16. — №2. — С. 32-40. – EDN RNBFGH., Белая Ж.Е., Рожинская Л.Я. Новые направления в терапии остеопороза — применение моноклональных человеческих антител к RANKL (Деносумаб) // Остеопороз и остеопатии. — 2011. — Т. 14. — №2. — С. 23-26. – EDN OWENHJ.
5. Broe K, Hannan M, Kiely D, et al. Predicting Fractures Using Bone Mineral Density: A Prospective Study of Long-Term Care Residents. Osteoporos Int. 11, 765–771 (2000). doi: https://doi.org/10.1007/s001980070055
6. Wasnich RD, Miller PD. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab. 2000 Jan;85(1):231-236. doi: https://doi.org/10.1210/jcem.85.1.6267
7. Seeman E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone. 2007 Sep;41(3):308-17. doi: https://doi.org/10.1016/j.bone.2007.06.010. Epub 2007 Jun 26
8. Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002 Mar;112(4):281-9. doi: https://doi.org/10.1016/s0002-9343(01)01124-x
9. Li Z, Meredith MP, Hoseyni MS. A method to assess the proportion of treatment effect explained by a surrogate endpoint. Stat Med. 2001;20: 3175–3188
10. Sarkar S, Mitlak BH, Wong M, et al. Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res. 2002;17:1–10
11. Watts NB, Geusens P, Barton P, Felsenberg D. Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res. 2005;20:2097–2104
12. Miller PD, McClung MR, Macovei L, et al. Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J Bone Miner Res. 2005;20(8):1315–1322. doi: https://doi.org/10.1359/JBMR.050313
13. Recker RR, Ste-Marie L-G, Langdahl B, et al. Effects of intermittent intravenous ibandronate injections on bone quality and micro-architecture in women with postmenopausal osteoporosis: The DIVA study. Bone. 2010;46(3):660–665. doi: https://doi.org/10.1016/j.bone.2009.11.004
14. Orwoll E, Ettinger M, Weiss S, et al. Alendronate for the Treatment of Osteoporosis in Men. N Engl J Med. 2000;343(9):604–610. doi: https://doi.org/10.1056/NEJM200008313430902
15. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis: Obstetrical & Gynecological Survey. 1999;54(1):39–40. doi: https://doi.org/10.1097/00006254-199901000-00021
16. Boonen S, Reginster J-Y, Kaufman J-M, et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714–1723. doi: https://doi.org/10.1056/NEJMoa1204061
17. Black DM, Schwartz AV, Ensrud KE, et al. Effects of Continuing or Stopping Alendronate After 5 Years of Treatment: The Fracture Intervention Trial Long-term Extension (FLEX): A Randomized Trial. JAMA. 2006;296(24):2927. doi: https://doi.org/10.1001/jama.296.24.2927
18. Black DM, Reid IR, Boonen S, et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012; 27(2): 243–254. doi: https://doi.org/10.1002/jbmr.1494
19. Adler RA, Fuleihan GE, Bauer DC, et al. (2016). Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American society for bone and mineral research. Journal of Bone and Mineral Research. 31(1), 16-35. doi: https://doi.org/10.1002/jbmr.2708
20. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014;25(10):2359–2381. doi: https://doi.org/10.1007/s00198-014-2794-2
21. Delmas PD, Eastell R, Garnero P, et al. Committee of Scientific Advisors of the International Osteoporosis Foundation. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11 Suppl 6:S2-17. doi: https://doi.org/10.1007/s001980070002
22. Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22(2):391–420. doi: https://doi.org/10.1007/s00198-010-1501-1
23. Johansson H, Odén A, Kanis JA, et al. IFCC-IOF Joint Working Group on Standardisation of Biochemical Markers of Bone Turnover A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–567. doi: https://doi.org/10.1007/s00223-014-9842-y47–49
24. Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD. Markers of Bone Turnover Predict Postmenopausal Forearm Bone Loss Over 4 Years: The OFELY Study. J Bone Miner Res. 1999;14(9):1614–1621. doi: https://doi.org/10.1359/jbmr.1999.14.9.1614
25. Tian A, Ma J, Feng K, et al. Reference markers of bone turnover for prediction of fracture: a meta-analysis. J Orthop Surg Res. 2019;14(1):68. doi: https://doi.org/10.1186/s13018-019-1100-6
26. Schott AM, Ganne C, Hans D, et al. Which screening strategy using BMD measurements would be most cost effective for hip fracture prevention in elderly women? A decision analysis based on a Markov model. Osteoporos Int. 2007 Feb;18(2):143-151. doi: https://doi.org/10.1007/s00198-006-0227-6
27. Dresner-Pollak R, Parker RA, Poku M, et al. Biochemical Markers of Bone Turnover Reflect Femoral Bone Loss in Elderly Women. Calcif Tissue Int. 1996;59(5):328–333. doi: https://doi.org/10.1007/s002239900135
28. Ross PD, Knowlton W. Rapid Bone Loss Is Associated with Increased Levels of Biochemical Markers. J Bone Miner Res. 1998;13(2):297–302. doi: https://doi.org/10.1359/jbmr.1998.13.2.297
29. Hansen MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12-year study. BMJ. 1991;303(6808):961–964. doi: https://doi.org/10.1136/bmj.303.6808.961
30. Schousboe JT, Bauer DC, Nyman JA, et al. Potential for bone turnover markers to cost-effectively identify and select post-menopausal osteopenic women at high risk of fracture for bisphosphonate therapy. Osteoporos Int. 2007;18(2):201–210. doi: https://doi.org/10.1007/s00198-006-0218-7
31. Eastell R, Vrijens B, Cahall DL, et al. Bone turnover markers and bone mineral density response with risedronate therapy: relationship with fracture risk and patient adherence // Journal of Bone and Mineral Research. 2011;26(7):1662-1669. doi: https://doi.org/10.1002/jbmr.342
32. Hochberg MC, Greenspan S, Wasnich RD, et al. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents // Journal of Clinical Endocrinology and Metabolism. 2002;87(4):1586-1592. doi: https://doi.org/10.1210/jcem.87.4.8415
33. Bauer DC, Black DM, Bouxsein ML, et al. Foundation for the National Institutes of Health (FNIH) Bone Quality Project. Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Anti-Resorptive Drugs: A Meta-Regression. J Bone Miner Res. 2018 Apr;33(4):634-642. doi: https://doi.org/10.1002/jbmr.3355
34. Bergmann P, Body J-J, Boonen S, et al. Members of the Advisory Board on Bone Markers Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. International Journal of Clinical Practice. 2009; 63(1):19–26. doi: https://doi.org/10.1111/j.1742-1241.2008.01911.x
35. McNabb BL, Vittinghoff E, Schwartz AV, et al. BMD changes and predictors of increased bone loss in postmenopausal women after a 5-year course of alendronate: BMD CHANGES AFTER ALENDRONATE TREATMENT. J Bone Miner Res. 2013; 28(6):1319–1327. doi: https://doi.org/10.1002/jbmr.1864
36. Bauer DC, Schwartz A, Palermo L, et al. Fracture Prediction After Discontinuation of 4 to 5 Years of Alendronate Therapy: The FLEX Study. JAMA Intern Med. 2014;174(7):1126. doi: https://doi.org/10.1001/jamainternmed.2014.1232
37. Cosman F, Cauley JA, Eastell R, et al. Reassessment of Fracture Risk in Women After 3 Years of Treatment With Zoledronic Acid: When is it Reasonable to Discontinue Treatment? The Journal of Clinical Endocrinology & Metabolism. 2014;99(12):4546–4554. doi: https://doi.org/10.1210/jc.2014-1971
38. Bauer DC, Garnero P, Hochberg MC, et al. Pretreatment Levels of Bone Turnover and the Antifracture Efficacy of Alendronate: The Fracture Intervention Trial. J Bone Miner Res. 2005;21(2):292–299. doi: https://doi.org/10.1359/JBMR.051018
39. Seibel MJ, Naganathan V, Barton I, Grauer A. Relationship Between Pretreatment Bone Resorption and Vertebral Fracture Incidence in Postmenopausal Osteoporotic Women Treated With Risedronate. J Bone Miner Res. 2003;19(2):323–329. doi: https://doi.org/10.1359/JBMR.0301231
40. Yamamoto T, Tsujimoto M, Hamaya E, Sowa H. Assessing the effect of baseline status of serum bone turnover markers and vitamin D levels on efficacy of teriparatide 20 μg/day administered subcutaneously in Japanese patients with osteoporosis. J Bone Miner Metab. 2013;31(2):199–205. doi: https://doi.org/10.1007/s00774-012-0403-z
41. Burch J, Rice S, Yang H, et al. Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technology Assessment. 2014;18(11). doi: https://doi.org/10.3310/hta18110
42. Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards // Osteoporosis International. 2011;22(2):391-420. doi: https://doi.org/10.1007/s00198-010-1501-1
43. Голоунина О.О., Белая Ж.Е., Мельниченко Г.А. Маркеры костного ремоделирования в клинической практике // Клиническая медицина. — 2018. — Т. 96. — №10. — С. 876-884. — doi: https://doi.org/10.34651/0023-2149-2018-96-10-876-884. – EDN GMSZPZ.
Review
For citations:
Belaya Zh.E., Rozhinskaya L.Ya. Surrogate markers in assessment of bisphosphonate effectiveness in osteoporosis treatment (bone mineral density, bone turnover markers). Osteoporosis and Bone Diseases. 2023;26(4):20-25. (In Russ.) https://doi.org/10.14341/osteo13166

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).