Clinical meaning of high bone mineral density (Part I). Genetic diseases causing high bone mass
https://doi.org/10.14341/osteo13170
Abstract
Over the nearly 40-year history of dual-energy X-ray absorptiometry (DXA), the main focus has been on the diagnosis of low bone mineral density (BMD), i.e. osteoporosis, which has been the subject of many domestic and foreign publications. The problems associated with increased BMD and related not only to the difficulty of interpreting the results, but also to further patient management tactics have been covered significantly less. Most often, such cases pass unnoticed in routine clinical practice due to the orphan nature of many diseases leading to the development of pathologically high bone density, and, as a rule, are interpreted as a manifestation of osteoarthritis. Of course, arthrosis, scoliosis and other joint deformities (especially in the spine) are the cause of overestimation of BMD in most clinical situations. However, bone dysplasia, manifested by a diffuse or focal increase in BMD, can, like osteoporosis, be complicated by low-traumatic fractures; neurological and other complications, potentially leading to disability, also occur. Despite the extremely rare occurrence of these diseases, doctors’ insufficient awareness about the peculiarities of the clinical and radiological pattern and the course of sclerosing bone dysplasias can lead to errors in making a diagnosis, and first of all, to incorrect interpretation of the results of DXA. Our review aims to briefly describe genetically determined pathologies that cause an excessive increase in BMD, in order to attract the attention of the medical audience to this problem.
About the Authors
I. A. SkripnikovaRussian Federation
Irina A. Skripnikova, MD, PhD, Dr. habil.
Moscow
Scopus Author ID: 6602554529
T. T. Tsoriev
Russian Federation
Timur T. Tsoriev, MD, PhD
10 Petroverigsky lane, building 3, 101990 Moscow
Scopus Author ID: 56976386100
E. Yu. Polyakova
Russian Federation
ElenaYu. Polyakova, MD, PhD
Moscow
Scopus Author ID: 57212507055
References
1. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137-1141. doi: https://doi.org/10.1002/jbmr.5650090802
2. Whyte MP. Misinterpretation of osteodensitometry with high bone density: BMD Z > or = + 2.5 is not ‘normal’. J Clin Densitom. 2005;8(1):1-6. doi: https://doi.org/10.1385/jcd:8:1:001
3. Morin S, Leslie W. High bone mineral density is associated with high body mass index. Osteoporos Int. 2009;20(7):1267-1271. doi: https://doi.org/10.1007/s00198-008-0797-6
4. Duncan EL, Danoy P, Kemp JP, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7(4):e1001372. doi: https://doi.org/10.1371/journal.pgen.1001372
5. Gregson CL, Steel SA, O’Rourke KP, et al. ‘Sink or swim’: an evaluation of the clinical characteristics of individuals with high bone mass. Osteoporos Int. 2012;23(2):643-654. doi: https://doi.org/10.1007/s00198-011-1603-4
6. Simonelli C, Adler RA, Blake GM, et al. Dual-Energy X-Ray Absorptiometry Technical Issues: The 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):109-122. doi: https://doi.org/10.1016/j.jocd.2007.12.009
7. Johnson ML, Gong G, Kimberling W, Reckér SM, Kimmel DB, Recker RB. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am J Hum Genet. 1997;60(6):1326-1332. doi: https://doi.org/10.1086/515470
8. Unger S, Ferreira CR, Mortier GR, Ali H, Bertola DR, et al. Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. 2023;191(5):1164-1209. doi: https://doi.org/10.1002/ajmg.a.63132
9. Kemp JP, Morris JA, Medina-Gomez C, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49(10):1468-1475. doi: https://doi.org/10.1038/ng.3949
10. Medina-Gomez C, Kemp JP, Trajanoska K, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88-102. doi: https://doi.org/10.1016/j.ajhg.2017.12.005
11. Boudin E, Van Hul W. Sclerosing bone dysplasias. Best Pract Res Clin Endocrinol Metab. 2018;32(5):707-723. doi: https://doi.org/10.1016/j.beem.2018.06.003
12. De Ridder R, Boudin E, Mortier G, Van Hul W. Human Genetics of Sclerosing Bone Disorders. Curr Osteoporos Rep. 2018;16(3):256-268. doi: https://doi.org/10.1007/s11914-018-0439-7
13. Orpha.net [Internet]. Orphanet Report Studies; Показатели распространенности и заболеваемости по редким болезням: Библиографические данные. — 2022 — №2. Available from: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_decreasing_prevalence_or_случаи_RU.pdf
14. Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int. 2005;77(5):263-274. doi: https://doi.org/10.1007/s00223-005-0027-6
15. Bénichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schönberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000;26(1):87-93. doi: https://doi.org/10.1016/s8756-3282(99)00244-6
16. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000;25:343-346. doi: https://doi.org/10.1038/77131
17. Whyte MP. Carbonic anhydrase II deficiency. Bone. 2023;169:116684. doi: https://doi.org/10.1016/j.bone.2023.116684
18. Sobacchi C, Frattini A, Guerrini MM, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960-962. doi: https://doi.org/10.1038/ng2076
19. Guerrini MM, Sobacchi C, Cassani B, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64-76. doi: https://doi.org/10.1016/j.ajhg.2008.06.015
20. Jimi E, Katagiri T. Critical Roles of NF-κB Signaling Molecules in Bone Metabolism Revealed by Genetic Mutations in Osteopetrosis. Int J Mol Sci. 2022;23(14):7995. doi: https://doi.org/10.3390/ijms23147995
21. Sobacchi C, Villa A, Schulz A, Kornak U. CLCN7-Related Osteopetrosis. 2007 [updated 2022 Jan 20]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024
22. Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. ClC-7 is a slowly voltage-gated 2Cl-/1H+-exchanger and requires Ostm1 for transport activity. EMBO J. 2011;30:2140-2152. doi: https://doi.org/10.1038/emboj.2011.137
23. Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone. 2017;102:50-59. doi: https://doi.org/10.1016/j.bone.2017.02.002
24. Pang Q, Chi Y, Zhao Z, Xing X, Li M, Wang O, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis Type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int. 2016;27:1047-1055. doi: https://doi.org/10.1007/s00198-015-3320-x
25. Waguespack SG, Hui SL, Dimeglio LA, Econs MJ. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab. 2007;92:771-778. doi: https://doi.org/10.1210/jc.2006-1986
26. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9:522-536. doi: https://doi.org/10.1038/nrendo.2013.137
27. Wu CC, Econs MJ, Di Meglio LA, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the Osteopetrosis Working Group. J Clin Endocrinol Metabol. 2017;102(9):3111-3123. doi: https://doi.org/10.1210/jc.2017-01127
28. Lo Iacono N, Blair HC, Poliani PL, Marrella V, Ficara F, et al. Osteopetrosis rescue upon RANKL administration to Rankl (-/-) mice: a new therapy for human RANKL-dependent ARO. J Bone Miner Res. 2012;27(12):2501-2510. doi: https://doi.org/10.1002/jbmr.1712
29. LeBlanc S, Savarirayan R. Pycnodysostosis. 2020 [updated 2023 Apr 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024
30. Gelb BD, Shi GP, Chapman HA, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236-1238. doi: https://doi.org/10.1126/science.273.5279.1236
31. Donnarumma M, Regis S, Tappino B, et al. Molecular analysis and characterization of nine novel CTSK mutations in twelve patients affected by pycnodysostosis. Mutation in brief #961. Online. Hum Mutat. 2007;28(5):524. doi: https://doi.org/10.1002/humu.9490
32. Xue Y, Cai T, Shi S, Wang W, Zhang Y, Mao T, Duan X. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet J Rare Dis. 2011;6:20. doi: https://doi.org/10.1186/1750-1172-6-20
33. Markova TV, Kenis V, Melchenko E, et al. Clinical and genetic characterization of three Russian patients with pycnodysostosis due to pathogenic variants in the CTSK gene. Mol Genet Genomic Med. 2022;10(5):e1904. doi: https://doi.org/10.1002/mgg3.1904
34. Lemire EG, Wiebe S. Clinical and radiologic findings in an adult male with dysosteosclerosis. Am J Med Genet A. 2008;146A(4):474-478. doi: https://doi.org/10.1002/ajmg.a.32182
35. Whyte MP, Wenkert D, McAlister WH, Novack DV, Nenninger AR, Zhang X, Huskey M, Mumm S. Dysosteosclerosis presents as an «osteoclast-poor» form of osteopetrosis: comprehensive investigation of a 3-year-old girl and literature review. J Bone Miner Res. 2010;25(11):2527-2539. doi: https://doi.org/10.1002/jbmr.131
36. Guo L, Bertola DR, Takanohashi A, Saito A, Segawa Y, et al. Bi-allelic CSF1R Mutations Cause Skeletal Dysplasia of Dysosteosclerosis-Pyle Disease Spectrum and Degenerative Encephalopathy with Brain Malformation. Am J Hum Genet. 2019;104(5):925-935. doi: https://doi.org/10.1016/j.ajhg.2019.03.004
37. Dulski J, Souza J, Santos ML, Wszolek ZK. Brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS): new cases, systematic literature review, and associations with CSF1R-ALSP. Orphanet J Rare Dis. 2023;18(1):160. doi: https://doi.org/10.1186/s13023-023-02772-9
38. Guo L, Elcioglu NH, Karalar OK, et al. Dysosteosclerosis is also caused by TNFRSF11A mutation. J Hum Genet. 2018;63(6):769-774. doi: https://doi.org/10.1038/s10038-018-0447-6
39. Howaldt A, Nampoothiri S, Quell LM, Ozden A, Fischer-Zirnsak B, et al. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone. 2019;120:495-503. doi: https://doi.org/10.1016/j.bone.2018.12.002
40. van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone. 2017;96:51-62. doi: https://doi.org/10.1016/j.bone.2016.10.010
41. Yavropoulou MP, Xygonakis C, Lolou M, Karadimou F, Yovos JG. The sclerostin story: from human genetics to the development of novel anabolic treatment for osteoporosis. Hormones (Athens). 2014;13(4):323-337. doi: https://doi.org/10.14310/horm.2002.1552
42. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537-543. doi: https://doi.org/10.1093/hmg/10.5.537
43. Collette NM, Genetos DC, Economides AN, et al. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci USA. 2012;109(35):14092-14097. doi: https://doi.org/10.1073/pnas.1207188109
44. Boudin E, Fijalkowski I, Piters E, et al. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum. 2013;43(2):220-240. doi: https://doi.org/10.1016/j.semarthrit.2013.01.004
45. Van Buchem FS, Hadders HN, Hansen JF, Woldring MG. Hyperostosis corticalis generalisata. Report of seven cases. Am J Med. 1962;33:387-397. doi: https://doi.org/10.1016/0002-9343(62)90235-8
46. Hamersma H, Gardner J, Beighton P. The natural history of sclerosteosis. Clin Genet. 2003;63(3):192-197. doi: https://doi.org/10.1034/j.1399-0004.2003.00036.x
47. Beighton P, Barnard A, Hamersma H, van der Wouden A. The syndromic status of sclerosteosis and van Buchem disease. Clin Genet. 1984;25(2):175-181. doi: https://doi.org/10.1111/j.1399-0004.1984.tb00481.x
48. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Löwik CW, et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab. 2005;90(12):6392-6395. doi: https://doi.org/10.1210/jc.2005-1235
49. van Lierop AH, Hamdy NA, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE. Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res. 2013;28(4):848-854. doi: https://doi.org/10.1002/jbmr.1794
50. Loots GG, Kneissel M, Keller H, Baptist M, Chang J, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 2005;15(7):928-935. doi: https://doi.org/10.1101/gr.3437105
51. Bieganski T, Baranska D, Miastkowska I, et al. A boy with severe craniodiaphyseal dysplasia and apparently normal mother. Am J Med Genet A. 2007;143A(20):2435-2443. doi: https://doi.org/10.1002/ajmg.a.31938
52. Kim SJ, Bieganski T, Sohn YB, et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129(5):497-502. doi: https://doi.org/10.1007/s00439-011-0947-3
53. Brueton LA, Winter RM. Craniodiaphyseal dysplasia. J Med Genet. 1990;27(11):701-706. doi: https://doi.org/10.1136/jmg.27.11.701
54. Gauthier LW, Fontanges E, Chapurlat R, Collet C, Rossi M. Long-term follow-up of severe autosomal recessive SP7-related bone disorder. Bone. 2024;179:116953. doi: https://doi.org/10.1016/j.bone.2023.116953
55. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179-192. doi: https://doi.org/10.1038/nm.3074
56. Fijalkowski I, Geets E, Steenackers E, Van Hoof V, Ramos FJ, Mortier G, et al. A Novel Domain-Specific Mutation in a Sclerosteosis Patient Suggests a Role of LRP4 as an Anchor for Sclerostin in Human Bone. J Bone Miner Res. 2016;31(4):874-881. doi: https://doi.org/10.1002/jbmr.2782
57. Diegel CR, Kramer I, Moes C, Foxa GE, McDonald MJ, et al. Inhibiting WNT secretion reduces high bone mass caused by Sost loss-of-function or gain-of-function mutations in Lrp5. Bone Res. 2023;11(1):47. doi: https://doi.org/10.1038/s41413-023-00278-5
58. Van Wesenbeeck L, Cleiren E, Gram J, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet. 2003;72(3):763-771. doi: https://doi.org/10.1086/368277
59. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513-1521. doi: https://doi.org/10.1056/NEJMoa013444
60. Frost M, Andersen T, Gossiel F, et al. Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high-bone-mass phenotype due to a mutation in Lrp5. J Bone Miner Res. 2011;26(8):1721-1728. doi: https://doi.org/10.1002/jbmr.376
61. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518-530. doi: https://doi.org/10.1002/jbmr.2176
62. Whyte MP, McAlister WH, Zhang F, et al. New explanation for autosomal dominant high bone mass: Mutation of low-density lipoprotein receptor-related protein 6. Bone. 2019;127:228-243. doi: https://doi.org/10.1016/j.bone.2019.05.003
63. Whyte MP, Mumm S, Baker JC, Zhang F, Sedighi H, Duan S, Cundy T. LRP6 High Bone Mass Characterized in Two Generations Harboring a Unique Mutation of Low-Density Lipoprotein Receptor-Related Protein 6. JBMR Plus. 2023;7(4):e10717. doi: https://doi.org/10.1002/jbm4.10717
64. Brance ML, Brun LR, Cóccaro NM, et al. High bone mass from mutation of low-density lipoprotein receptor-related protein 6 (LRP6). Bone. 2020;141:115550. doi: https://doi.org/10.1016/j.bone.2020.115550
65. Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489-19500. doi: https://doi.org/10.1074/jbc.M110.190330
66. Chatron N, Lesca G, Labalme A, et al. A novel homozygous truncating mutation of the SFRP4 gene in Pyle’s disease. Clin Genet. 2017;92(1):112-114. doi: https://doi.org/10.1111/cge.12907
67. Tsukamoto S, Mizuta T, Fujimoto M, et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci Rep. 2014;4:7596. doi: https://doi.org/10.1038/srep07596
68. Gregson CL, Bergen DJM, Leo P, Sessions RB, Wheeler L, et al. A Rare Mutation in SMAD9 Associated With High Bone Mass Identifies the SMAD-Dependent BMP Signaling Pathway as a Potential Anabolic Target for Osteoporosis. J Bone Miner Res. 2020;35(1):92-105. doi: https://doi.org/10.1002/jbmr.3875
69. Ozdemirel AE, Cakit BD, Erdem HR, et al. A rare benign disorder mimicking metastasis on radiographic examination: a case report of osteopoikilosis. Rheumatol Int. 2011;31(8):1113-1116. doi: https://doi.org/10.1007/s00296-010-1664-2
70. Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004;36(11):1213-1218. doi: https://doi.org/10.1038/ng1453
71. Whyte MP, Murphy WA, Siegel BA. 99mTc-pyrophosphate bone imaging in osteopoikilosis, osteopathia striata, and melorheostosis. Radiology. 1978;127(2):439-443. doi: https://doi.org/10.1148/127.2.439
72. Gass JK, Hellemans J, Mortier G, Griffiths M, Burrows NP. Buschke-Ollendorff syndrome: a manifestation of a heterozygous nonsense mutation in the LEMD3 gene. J Am Acad Dermatol. 2008;58(5 Suppl 1):S103–S104. doi: https://doi.org/10.1016/j.jaad.2007.03.031
73. Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, et al. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-b/SMAD pathway. J Exp Med. 2020;217(5):e20191499. doi: https://doi.org/10.1084/jem.20191499
74. De Ridder R, Boudin E, Zillikens MC, Ibrahim J, van der Eerden BCJ, Van Hul W, et al. A multi-omics approach expands the mutational spectrum of MAP2K1-related melorheostosis. Bone. 2020;137:115406. doi: https://doi.org/10.1016/j.bone.2020.115406
75. Freyschmidt J. Melorheostosis: a review of 23 cases. Eur Radiol. 2001;11(3):474-479. doi: https://doi.org/10.1007/s003300000562
76. Spinnato P, Colangeli M, Pedrini E, et al. Aneurysmal bone cyst-like changes developed in melorheostosis with epiphyseal osteopoikilosis. Skeletal Radiol. 2024;53(7):1437-1441. doi: https://doi.org/10.1007/s00256-023-04529-8
77. Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000;26(1):19-20. doi: https://doi.org/10.1038/79128
78. Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757-765. doi: https://doi.org/10.1038/nm.1979
79. Janssens K, Vanhoenacker F, Bonduelle M, et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006;43(1):1-11. doi: https://doi.org/10.1136/jmg.2005.033522
80. Combier A, Palazzo E, Forien M, et al. Failure of conventional treatment and losartan in Camurati-Engelmann disease: a case report. Joint Bone Spine. 2018;85(5):649-650. doi: https://doi.org/10.1016/j.jbspin.2018.01.015
81. Ghosal SP, Mukherjee AK, Mukherjee D, et al. Diaphyseal dysplasia associated with anemia. J Pediatr. 1988;113(1 Pt 1):49-57. doi: https://doi.org/10.1016/s0022-3476(88)80527-4
82. Genevieve D, Proulle V, Isidor B, et al. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet. 2008;40(3):284-286. doi: https://doi.org/10.1038/ng.2007.66
83. Whyte MP, Obrecht SE, Finnegan PM, et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med. 2002;347(3):175-184. doi: https://doi.org/10.1056/NEJMoa013096
84. Cundy T, Davidson J, Rutland MD, et al. Recombinant osteoprotegerin for juvenile Paget’s disease. N Engl J Med. 2005;353(9):918-923. doi: https://doi.org/10.1056/NEJMoa050893
Supplementary files
Review
For citations:
Skripnikova I.A., Tsoriev T.T., Polyakova E.Yu. Clinical meaning of high bone mineral density (Part I). Genetic diseases causing high bone mass. Osteoporosis and Bone Diseases. 2024;27(2):31-43. (In Russ.) https://doi.org/10.14341/osteo13170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).