Preview

Osteoporosis and Bone Diseases

Advanced search

A case report of autosomal dominant hypophosphatemic rickets due to a mutation in the FGF23 gene in an adult: diagnostic difficulties

https://doi.org/10.14341/osteo13178

Abstract

Osteomalacia is a systemic disease of the skeleton, accompanied by the formation of an unmineralized or poorly mineralized osteoid instead of full-fledged bone tissue. The most common cause is severe vitamin D and calcium deficiency, phosphorus deficiency (kidney pathology, mesenchymal tumors secreting an excess of FGF23, genetic diseases). Among inherited pathologies, X-linked dominant hypophosphatemic rickets (XLHR, gene PHEX, OMIM: 307800) is the most frequent form, while autosomal dominant hypophosphatemic rickets (ADHR, gene FGF23, OMIM: 193100) and autosomal recessive hypophosphatemic rickets 1,2 (ARHR1-2, genes DMP1, ENPP1, FAM20C, OMIM: 241520, OMIM: 613312) are much less common. ADHR is an extremely rare form of genetic rickets caused by mutations in the FGF23 gene. It can manifest at any age. About 50 cases of this disease have been reported in the literature. This article presents the first clinical case of ADHR in an adult in the Russian Federation. Severe vitamin D deficiency, renal tubular disorders and tumor-induced osteomalacia were excluded in differential diagnosis. The patient underwent a genetic test, which revealed a mutation in the FGF23 gene and confirmed the diagnosis of ADHR. Therapy with an active vitamin D analog and phosphate supplement was initiated, after which the patient noticed decreased pain when walking and increased muscle strength.

Difficulties in diagnosing osteomalacia are due to the lack of routine determination of serum phosphate and low awareness of doctors about this disease. In some cases, genetic tests make it possible to confirm hereditary forms, which prevents unnecessary surgical treatment, ensures timely prescription of therapy and significantly improves the quality of patients’ lives.

About the Authors

E. E. Sakhnova
O.M. Filatov City Clinical Hospital №15
Russian Federation

Ekaterina E. Sakhnova - MD.

23 Veshnyakovskaya street, 111539 Moscow


Competing Interests:

None



E. G. Przhiyalkovskaya
Endocrinology Research Centre
Russian Federation

Elena G. Przhiyalkovskaya - MD, PhD.

Moscow


Competing Interests:

None



E. O. Mamedova
Endocrinology Research Centre
Russian Federation

Elizaveta O. Mamedova - MD, PhD.

Moscow


Competing Interests:

None



I. S. Chugunov
Endocrinology Research Centre
Russian Federation

Igor S. Chugunov - MD, PhD.

Moscow


Competing Interests:

None



References

1. Fukumoto S, Ozono K, Michigami T, et al. Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab. 2015;33(5):467-473. doi: https://doi.org/10.1007/s00774-015-0698-7

2. Vieth R. Weaker bones and white skin as adaptions to improve anthropological “fitness” for northern environments. Osteoporos Int. 2020;31(4):617-624. doi: https://doi.org/10.1007/s00198-019-05167-4

3. Golounina OO, Runova GE, Fadeyev VV. Osteomalacia in practice of endocrinologist: etiology, pathogenesis, differential diagnosis with osteoporosis. Osteoporos Bone Dis. 2020;22(2):23-31 (In Russ.). doi: https://doi.org/10.14341/osteo12117

4. Biasucci G, Donini V, Cannalire G. Rickets Types and Treatment with Vitamin D and Analogues. Nutrients. 2024;16(3):1-15. doi: https://doi.org/10.3390/nu16030416

5. Gronskaia SA, Belaya ZE, Melnichenko GA. Fgf23 Tumor Induced Osteomalacia. Probl Endokrinol (Mosk). 2022;68(5):56-66 (In Russ.). doi: https://doi.org/10.14341/probl13130

6. Ackah SA, Imel EA. Approach to Hypophosphatemic Rickets. J Clin Endocrinol Metab. 2023;108(1):209-220. doi: https://doi.org/10.1210/clinem/dgac488

7. Gifre L, Peris P, Monegal, A. et al. Osteomalacia revisited: A report on 28 cases. Clin Rheumatol. 2011;30(5):639-645. doi: https://doi.org/10.1007/s10067-010-1587-z

8. Heijboer AC, Cavalier E. The Measurement and Interpretation of Fibroblast Growth Factor 23 (FGF23) Concentrations. Calcif Tissue Int. 2023;112(2):258-270. doi: https://doi.org/10.1007/s00223-022-00987-9

9. Florenzano P, Cipriani C, Roszko KL, et al. Review Approach to patients with hypophosphataemia. LANCET Diabetes Endocrinol. 2020;8587(19). doi: https://doi.org/10.1016/S2213-8587(19)30426-7

10. Rosenthall L. DEXA bone densitometry measurements in adults with X-linked hypophosphatemia. Clin Nucl Med. 1993;18(7):564-566. doi: https://doi.org/10.1097/00003072-199307000-00004

11. Von Falck C, Rodt T, Rosenthal H, et al. 68Ga-DOTANOC PET/CT for the detection of a mesenchymal tumor causing oncogenic osteomalacia. Eur J Nucl Med Mol Imaging. 2008;35(5):1034. doi: https://doi.org/10.1007/s00259-008-0755-8

12. Cianferotti L. Osteomalacia Is Not a Single Disease. Int J Mol Sci. 2022;23(23). doi: https://doi.org/10.3390/ijms232314896

13. White KE, Carn G, Lorenz-Depiereux B, et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60(6):2079-2086. doi: https://doi.org/10.1046/j.1523-1755.2001.00064.x

14. Hui Q, Jin Z, Li X, et al. FGF family: From drug development to clinical application. Int J Mol Sci. 2018;19(7). doi: https://doi.org/10.3390/ijms19071875

15. Li X. The FGF metabolic axis. Front Med. 2019;13(5):511-530. doi: https://doi.org/10.1007/s11684-019-0711-y

16. Mameli C, Sangiorgio A, Colombo V, et al. Autosomal dominant hypophosphatemic rickets: A case report and review of the literature. Int J Environ Res Public Health. 2021;18(16):4-13. doi: https://doi.org/10.3390/ijerph18168771

17. Kulikova KS, Vasiliev EV, Petrov VM, Tiulpakov AN. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23 gene in child from Russia. World Journal of Personalized Medicine. 2018;2(1):5-9 (In Russ.). doi: https://doi.org/10.14341/pm9661

18. Liu C, Zhao Z, Wang O, et al. Earlier Onset in Autosomal Dominant Hypophosphatemic Rickets of R179 than R176 Mutations in Fibroblast Growth Factor 23: Report of 20 Chinese Cases and Review of the Literature. Calcif Tissue Int. 2019;105(5):476-486. doi: https://doi.org/10.1007/s00223-019-00597-y

19. Gronskaia SA, Belaya ZhE, Rozhinskaya LYa, et al. Clinical features, diagnostics and treatment of FGF23 secreting tumors: series of 40 clinical cases. Problems of Endocrinology. 2023;69(5):25-38 (In Russ.). doi: https://doi.org/https://doi.org/10.14341/probl13221

20. Linglart A, Biosse-Duplan M, Briot K, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3(1):R13-R30. doi: https://doi.org/10.1530/ec-13-0103

21. Zittermann A, Berthold HK, Pilz S. The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2021;75(6):980-987. doi: https://doi.org/10.1038/s41430-020-00725-0

22. Tieder M, Blonder J, Strauss S, et al. Hyperoxaluria is not a cause of nephrocalcinosis in phosphate-treated patients with hereditary hypophosphatemic rickets. Nephron. 1993;64(4):526-531. doi: https://doi.org/10.1159/000187395

23. Carpenter TO, Mitnick MA, Ellison A, et al. Nocturnal hyperparathyroidism: A frequent feature of X-Linked hypophosphatemia. J Clin Endocrinol Metab. 1994;78(6):2-7. doi: https://doi.org/10.1210/jcem.78.6.8200940

24. Imel EA, Liu Z, Coffman M, et al. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets. J Bone Miner Res. 2020;35(2):231-238. doi: https://doi.org/10.1002/jbmr.3878

25. Imel EA, Hui SL, Econs MJ. FGF23 Concentrations Vary With Disease Status in Autosomal Dominant Hypophosphatemic Rickets. 2007;22(4):520-526. doi: https://doi.org/10.1359/JBMR.070107

26. Klein K, Asaad S, Econs M, Rubin JE. Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Rep. 2018;2018. doi: https://doi.org/10.1136/bcr-2017-222851

27. Shimizu Y, Tada Y, Yamauchi M, et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide. Another form of FGF23-related hypophosphatemia. Bone. 2009;45(4):814-816. doi: https://doi.org/10.1016/j.bone.2009.06.017

28. Carpenter TO, Whyte MP, Imel EA, et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018;378(21):1987-1998. doi: https://doi.org/10.1056/nejmoa1714641

29. Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019;393(10189):2416-2427. doi: https://doi.org/10.1016/S0140-6736(19)30654-3


Supplementary files

1. Рисунок 1. Рентгенологическое исследование нижних конечностей в режиме лазерной склейки.
Subject
Type Исследовательские инструменты
View (151KB)    
Indexing metadata ▾

Review

For citations:


Sakhnova E.E., Przhiyalkovskaya E.G., Mamedova E.O., Chugunov I.S. A case report of autosomal dominant hypophosphatemic rickets due to a mutation in the FGF23 gene in an adult: diagnostic difficulties. Osteoporosis and Bone Diseases. 2024;27(4):17-24. (In Russ.) https://doi.org/10.14341/osteo13178

Views: 523


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)