Preview

Osteoporosis and Bone Diseases

Advanced search

Modern approaches to assessing bone disorders in primary hyperparathyroidism: the potential of 3D-modeling of the femur

https://doi.org/10.14341/osteo13200

Abstract

Primary hyperparathyroidism (PHPT) is a common endocrine disease with excessive secretion of parathyroid hormone and impaired mineral metabolism, resulting in decreased bone mineral density (BMD) and increased fracture risk. Radiography, dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QCT), high-resolution peripheral QCT (HRPQCT) and radiofrequency echographic multispectrometry (REMS) have traditionally been used to assess bone density. However, these methods have certain limitations, therefore the search for new diagnostic approaches is necessary. In recent years, 3D femoral bone modelling (3D-DXA) has been actively developed, which allows three-dimensional analysis of bone density and structure based on DXA data. This method demonstrates high accuracy and correlation with CT, providing a more detailed assessment of changes in the cortical and trabecular components. The use of 3D-DXA opens new perspectives in the diagnosis and monitoring of bone complications in PHPT, which may contribute to more effective fracture risk prediction and personalised choice of therapeutic tactics.

About the Authors

A. P. Pershina-Miliutina
Endocrinology Research Centre
Russian Federation

Anastasiia P. Pershina-Miliutina - MD.

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

None



A. K. Eremkina
Endocrinology Research Centre
Russian Federation

Anna K. Eremkina - MD, PhD.

Moscow


Competing Interests:

None



A. V. Aredov
Endocrinology Research Centre
Russian Federation

Aleksey V. Aredov.

Moscow


Competing Interests:

None



I. D. Ozhimalov
Lomonosov Moscow State University
Russian Federation

Ilia D. Ozhimalov.

Moscow


Competing Interests:

None



A. M. Gorbacheva
Endocrinology Research Centre
Russian Federation

Anna M. Gorbacheva - MD, PhD.

Moscow


Competing Interests:

None



A. V. Khairieva
Endocrinology Research Centre
Russian Federation

Angelina V. Khairieva - MD.

Moscow


Competing Interests:

None



N. V. Tarbaeva
Endocrinology Research Centre
Russian Federation

Natalia V. Tarbaeva - MD, PhD.

Moscow


Competing Interests:

None



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

Natalia G. Mokrysheva - MD, PhD, Professor.

Moscow


Competing Interests:

None



References

1. Bilezikian JP, Khan AA, Silverberg SJ et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J Bone Miner Res. 2022;37(11):2293–314. doi: https://doi.org/10.1002/jbmr.4677

2. Mokrysheva NG. Okoloshchitovidnye zhelezy. Pervichnyj giperparatireoz. Moscow, MIA; 2019. ISBN: 9785907098251 (In Russ.)

3. Ozhimalov ID, Gorbacheva AM, Eremkina AK, et al. Features of the bone metabolism in primary hyperparathyroidism. Russian Journal of Preventive Medicine. 2024;27(9):130‑137 (In Russ.) doi: https://doi.org/10.17116/profmed202427091130

4. Makras P, Anastasilakis AD. Bone disease in primary hyperparathyroidism. Metabolism. 2018;80:57–65. doi: https://doi.org/10.1016/j.metabol.2017.10.003

5. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015;22:41–50. doi: https://doi.org/10.1016/j.coph.2015.03.005

6. Dedov II, Melnichenko GA, Mokrysheva NG, et al. Draft of clinical guidelines for the diagnosis and treatment of primary hyperparathyroidism in adult patients. Endocrine Surgery. 2023;16(4):5-54 (In Russ.) doi: https://doi.org/10.14341/SERG12790

7. Whitmarsh T. Concerns regarding the use of 3D-DXA. Bone. 2021;149:115939. doi: https://doi.org/10.1016/j.bone.2021.115939

8. Humadi A, Alhadithi R, Alkudiari S. Validity of the DEXA diagnosis of involutional osteoporosis in patients with femoral neck fractures. Indian J Orthop. 2010;44(1):73–78. doi: https://doi.org/10.4103/0019-5413.58609

9. Rubin MR, Bilezikian JP, McMahon DJ, et al. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J Clin Endocrinol Metab. 2008;93(9):3462–3470. doi: https://doi.org/10.1210/jc.2007-1215

10. Schnitzler CM. Bone quality: a determinant for certain risk factors for bone fragility. Calcif Tissue Int. 1993;53 Suppl 1 (1 Supplement). doi: https://doi.org/10.1007/BF01673398

11. Tsoriev TT, Belaya ZhE, Mel’nichenko GA. Trabecular bone score – a non-invasive analytical method to evaluate bone quality based on routine dual-energy absorptiometry. Perspectives of its use in clinical practice. Almanac of Clinical Medicine. 2016;44(4):462–476 (In Russ.) doi: https://doi.org/10.18786/2072-0505-2016-44-4-23-24

12. Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J, et al. Trabecular bone score (TBS) – a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98(5):1963–1970. doi: https://doi.org/10.1210/jc.2012-4255

13. Eller-Vainicher C, Filopanti M, Palmieri S, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169(2):155–162. doi: https://doi.org/10.1530/EJE-13-0305

14. Romagnoli E, Cipriani C, Nofroni I, et al. “Trabecular Bone Score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013;53(1):154–159. doi: https://doi.org/10.1016/j.bone.2012.11.041

15. Silverberg SJ, Clarke BL, Peacock M, et al. Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop. J Clin Endocrinol Metab. 2014;99(10):3580–3594. doi: https://doi.org/10.1210/jc.2014-1415

16. Oh S, Kang WY, Park H, et al. Evaluation of deep learningbased quantitative computed tomography for opportunistic osteoporosis screening. Scientific Reports. 2024;14(1):1–9. doi: https://doi.org/10.1038/s41598-023-45824-7

17. Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4-47 (In Russ.) doi: https://doi.org/10.14341/OSTEO12930

18. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–24. doi: https://doi.org/10.1016/J.EJRAD.2009.04.074

19. Stein EM, Silva BC, Boutroy S, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2013;28(5):1029–1040. doi: https://doi.org/10.1002/JBMR.1841

20. Hansen S, Jensen JEB, Rasmussen L, et al. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: A case-control study using HR-pQCT. J Bone Miner Res. 2010;25(9):1941–1947. doi: https://doi.org/10.1002/jbmr.98

21. Conversano F, Franchini R, Greco A et al. A novel ultrasound methodology for estimating spine mineral density. Ultrasound Med Biol. 2015;41(1):281–300. doi: https://doi.org/10.1016/j.ultrasmedbio.2014.08.017

22. Messina C, Gitto S, Colombo R, et al. Short-Term Precision and Repeatability of Radiofrequency Echographic Multi Spectrometry (REMS) on Lumbar Spine and Proximal Femur: An In Vivo Study. Journal of Imaging. 2023;9(6):118. doi: https://doi.org/10.3390/jimaging9060118

23. Pisani P, Conversano F, Muratore M, et al. Fragility Score: a REMS-based indicator for the prediction of incident fragility fractures at 5 years. Aging Clin Exp Res. 2023;35(4):763–73. doi: https://doi.org/10.1007/s40520-023-02358-2

24. Cortet B, Dennison E, Diez-Perez A, et al. Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone. 2021;143. doi: https://doi.org/10.1016/j.bone.2020.115786

25. Grassi G, Palmieri S, Cairoli E, et al. Radiofrequency Echographic Multi Spectrometry (REMS) evaluation in patients with primary osteoporosis and primary hyperparathyroidism. 22nd European Congress of Endocrinology. 2020 5-9 September, European Society of Endocrinology Endocrine Abstracts. 2020;80. doi: https://doi.org/10.1530/endoabs.70.AEP134

26. Schini M, Johansson H, Harvey NC et al. An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J Endocrinol Invest. 2024;47(3):501–11. doi: https://doi.org/10.1007/s40618-023-02219-9

27. Khan R, Martin J, Das G. The Impact of Observation Versus Parathyroidectomy on Bone Mineral Density and Fracture Risk Determined by FRAX Tool in Patients With Primary Hyperparathyroidism. J Clin Densitom. 2021;24(4):571–80. doi: https://doi.org/10.1016/j.jocd.2020.12.005

28. Ruiz Wills C, Olivares AL, Tassani S et al. 3D patient-specific finite element models of the proximal femur based on DXA towards the classification of fracture and non-fracture cases. Bone. 2019;121:89–99. doi: https://doi.org/10.1016/j.bone.2019.01.001

29. Humbert L, Bagué A, Di Gregorio S et al. DXA-Based 3D Analysis of the Cortical and Trabecular Bone of Hip Fracture Postmenopausal Women: A Case-Control Study. J Clin Densitom. 2020;23(3):403–410. doi: https://doi.org/10.1016/j.jocd.2018.11.004

30. Winzenrieth R, Humbert L, Di Gregorio S, et al. Effects of osteoporosis drug treatments on cortical and trabecular bone in the femur using DXA-based 3D modeling. Osteoporos Int. 2018;29(10):2323–2333. doi: https://doi.org/10.1007/s00198-018-4624-4

31. Miller PD, Hattersley G, Riis BJ et al. Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women With Osteoporosis: A Randomized Clinical Trial. JAMA. 2016;316(7):722–733. doi: https://doi.org/10.1001/jama.2016.11136

32. Winzenrieth R, Ominsky MS, Wang Y, et al. Differential effects of abaloparatide and teriparatide on hip cortical volumetric BMD by DXA-based 3D modeling. Osteoporos Int. 2021;32(3):575–583. doi: https://doi.org/10.1007/s00198-020-05806-1

33. Sheth NP, Russell Smith J, Winzenrieth R et al. Effects of Abaloparatide on Bone Mineral Density in Proximal Femoral Regions Corresponding to Arthroplasty Gruen Zones: A Study of Postmenopausal Women with Osteoporosis. J Bone Joint Surg Am. 2024;106(13):1162–1170. doi: https://doi.org/10.2106/JBJS.23.01334

34. Cosman F, Crittenden DB, Adachi JD et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med. 2016;375(16):1532–1543. doi: https://doi.org/10.1056/NEJMoa1607948

35. Saag KG, Petersen J, Brandi ML et al. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N Engl J Med. 2017;377(15):1417–1427. doi: https://doi.org/10.1056/NEJMoa1708322

36. Lewiecki EM, Betah D, Humbert L et al. 3D-modeling from hip DXA shows improved bone structure with romosozumab followed by denosumab or alendronate. J Bone Miner Res. 2024;39(4):473–483. doi: https://doi.org/10.1093/jbmr/zjae028

37. Iki M, Winzenrieth R, Tamaki J et al. Predictive ability of novel volumetric and geometric indices derived from dual-energy X-ray absorptiometric images of the proximal femur for hip fracture compared with conventional areal bone mineral density: the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2021;32(11):2289–2299. doi: https://doi.org/10.1007/s00198-021-06013-2

38. Gracia-Marco L, García-Fontana B, Ubago-Guisado E et al. Analysis of Bone Impairment by 3D DXA Hip Measures in Patients With Primary Hyperparathyroidism: A Pilot Study. J Clin Endocrinol Metab. 2020;105(1):175–184. doi: https://doi.org/10.1210/clinem/dgz060

39. Fisher AA, Srikusalanukul W, Davis MW, et al. Clinical profiles and risk factors for outcomes in older patients with cervical and trochanteric hip fracture: similarities and differences. J Trauma Manag Outcomes. 2012;6(1). doi: https://doi.org/10.1186/1752-2897-6-2

40. Arboiro-Pinel R, Mahíllo-Fernández I, Díaz-Curiel M. Bone Analysis Using Trabecular Bone Score and Dual-Energy X-Ray Absorptiometry-Based 3-Dimensional Modeling in Postmenopausal Women With Primary Hyperparathyroidism. Endocr Pract. 2022;28(1):83–89. doi: https://doi.org/10.1016/j.eprac.2021.08.006

41. Arboiro-Pinel R, Mahillo-Fernández I, Díaz-Curiel M. Primary Hyperparathyroidism: Assessment of the Effects of Parathyroidectomy Using Dual X-Ray Absorptiometry, Trabecular Bone Score, and Dual X-Ray Absorptiometry-Based Three-Dimensional Modeling. Endocr Pract. 2024;30(4):340–347. doi: https://doi.org/10.1016/j.eprac.2024.01.004

42. Eremkina AK, Pylina S V., Elfimova AR et al. Analysis of Bone Phenotype Differences in MEN1-Related and Sporadic Primary Hyperparathyroidism Using 3D-DXA. J Clin Med. 2024;13(21). doi: https://doi.org/10.3390/jcm13216382


Supplementary files

Review

For citations:


Pershina-Miliutina A.P., Eremkina A.K., Aredov A.V., Ozhimalov I.D., Gorbacheva A.M., Khairieva A.V., Tarbaeva N.V., Mokrysheva N.G. Modern approaches to assessing bone disorders in primary hyperparathyroidism: the potential of 3D-modeling of the femur. Osteoporosis and Bone Diseases. 2025;28(2):11-18. (In Russ.) https://doi.org/10.14341/osteo13200

Views: 71


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)