Preview

Osteoporosis and Bone Diseases

Advanced search

X-linked osteoporosis/osteogenesis imperfecta due to a PLS3 mutation: the first description in Russia

https://doi.org/10.14341/osteo13201

Abstract

The differential diagnosis of osteoporosis in children and young adults is a challenge. In young people, the most common cause of primary osteoporosis is osteogenesis imperfecta (OI). In 2013, 5 families with X-linked osteoporosis and osteoporotic fractures manifesting in childhood were described for the first time in men who had pathogenic variants in the PLS3 gene. The PLS3 gene is located on the X chromosome (Xq23) and encodes the protein plastin 3, the main function of which is to bind and group F-actin molecules, the main component of the cytoskeleton. Currently, about 50 men with this disease have been described in the literature.

In this article, two brothers with X-linked osteoporosis/OI are described, in whom hemizygous mutations in the PLS3 gene ((NM_005032.7) c.836_837dup (p.His280Phefs*43) were detected. In both brothers, fractures have occurred since childhood (forearm bones, and in the elder brother also a fracture of the humerus and a fracture of the greater trochanter), and later multiple compression fractures of the vertebrae were detected. No disorders of mineral metabolism were detected in both brothers, but bone mineral density (BMD) measured by DEXA was decreased. The elder brother is treated with teriparatide, the younger brother is treated with zoledronic acid, and new fractures were not detected during a short follow-up.

Both brothers received this PLS3 variant from their mother, in whom it was heterozygous. She was diagnosed with primary hyperparathyroidism with multiple parathyroid adenomas and severe osteoporosis with two thoracic vertebral compression fractures and decrease in spinal BMD. In Russia, cases of X-linked osteoporosis/OI due to mutations in the PLS3 gene have not been previously described. Cases of primary hyperparathyroidism in patients with PLS3 mutations have not been described in the literature.

About the Authors

E. O. Mamedova
Endocrinology Research Centre
Russian Federation

Elizaveta O. Mamedova - MD, PhD.

11 Dm.Ulyanova street, 117292 Moscow


Competing Interests:

None



E. S. Senyshkina
Endocrinology Research Centre
Russian Federation

Evgeniya S. Senyushkina - MD.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



S. A. Buryakina
Endocrinology Research Centre
Russian Federation

Svetlana A. Buryakina - MD, PhD.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



E. V. Tarasova
Endocrinology Research Centre
Russian Federation

Elena V. Tarasova - MD.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



K. V. Smirnov
Endocrinology Research Centre
Russian Federation

Kirill V. Smirnov.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



R. R. Salakhov
Endocrinology Research Centre
Russian Federation

Ramil R. Slakhov - MD, PhD.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



R. I. Khusainova
Endocrinology Research Centre
Russian Federation

Rita I. Khusainova - PhD, Professor.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



Zh. E. Belaya
Endocrinology Research Centre
Russian Federation

Zhanna E. Belaya - MD, PhD, Professor.

11 Dm. Ulyanova street, 117292 Moscow


Competing Interests:

None



References

1. Mäkitie O, Zillikens MC. Early-Onset Osteoporosis. Calcif Tissue Int. 2022;110(5):546-561. doi: https://doi.org/10.1007/s00223-021-00885-6

2. Marrani E, Giani T, Simonini G, Cimaz R. Pediatric Osteoporosis: Diagnosis and Treatment Considerations. Drugs. 2017;77(6):679-695. doi: https://doi.org/10.1007/s40265-017-0715-3

3. Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev. 2022;43(1):61-90. doi: https://doi.org/10.1210/endrev/bnab017

4. Zaripova A, Nadyrshina D, Khusainova R. Spectrum and frequency of pathogenic changes in patients with incomplete osteogenesis from the Republic of Bashkortostan. Medical Genetics. 2022;21(9):41-44. (In Russ.) doi: https://doi.org/10.25557/2073-7998.2022.09.41-44

5. Rossi V, Lee B, Marom R. Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr. 2019;31(6):708-715. doi: https://doi.org/10.1097/MOP.0000000000000813

6. Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int. 2024;115(6):891-914. doi: https://doi.org/10.1007/s00223-024-01266-5

7. Merkur’eva ES. Kliniko-geneticheskie harakteristiki izolirovannyh i sindromal’nyh form nesovershennogo osteogeneza [dissertation] Moscow; 2024. (in Russ.) Доступно по: https://api.med-gen.ru/site/assets/files/3370/disser_merkureva_e_s_1.pdf. Ссылка активна на 28.03.2025 г.

8. Zaripova AR, Khusainova RI. Modern classification and molecular-genetic aspects of osteogenesis imperfecta. Vavilovskii Zhurnal Genet Selektsii. 2020;24(2):219-227. doi: https://doi.org/10.18699/VJ20.614

9. van Dijk FS, Zillikens MC, Micha D, et al. PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med. 2013;369(16):1529-1536. doi: https://doi.org/10.1056/NEJMoa1308223

10. Wolff L, Strathmann EA, Müller I, et al. Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci. 2021;78(13):5275-5301. doi: https://doi.org/10.1007/s00018-021-03843-5

11. Zhong W, Pathak JL, Liang Y, et al. The intricate mechanism of PLS3 in bone homeostasis and disease. Front Endocrinol (Lausanne). 2023;14:1168306. doi: https://doi.org/10.3389/fendo.2023.1168306

12. Hu J, Li LJ, Zheng WB, et al. A novel mutation in PLS3 causes extremely rare X-linked osteogenesis imperfecta. Mol Genet Genomic Med. 2020;8(12):e1525. doi: https://doi.org/10.1002/mgg3.1525

13. Brlek P, Antičević D, Molnar V, et al. X-Linked Osteogenesis Imperfecta Possibly Caused by a Novel Variant in PLS3. Genes (Basel). 2021;12(12):1851. doi: https://doi.org/10.3390/genes12121851

14. Wu Z, Feng Z, Zhu X, et al. Identification of a novel splicing mutation and genotype-phenotype correlations in rare PLS3-related childhood-onset osteoporosis. Orphanet J Rare Dis. 2022;17(1):247. Published 2022 Jun 25. doi: https://doi.org/10.1186/s13023-022-02380-z

15. Qiu C, Li QW, Zhang L, Liu XL. X-linked osteogenesis imperfecta accompanied by patent ductus arteriosus: a case with a novel splice variant in PLS3. World J Pediatr. 2022;18(7):515-519. doi: https://doi.org/10.1007/s12519-022-00539-z

16. Tüysüz B, Elkanova L, Uludağ Alkaya D, et al. Osteogenesis imperfecta in 140 Turkish families: Molecular spectrum and, comparison of long-term clinical outcome of those with COL1A1/A2 and biallelic variants. Bone. 2022;155:116293. doi: https://doi.org/10.1016/j.bone.2021.116293

17. Apperley LJ, Albaba S, Dharmaraj P, Balasubramanian M. PLS3 whole gene deletion as a cause of X-linked osteoporosis: Clinical report with review of published PLS3 literature. Clin Dysmorphol. 2023;32(1):43-47. doi: https://doi.org/10.1097/MCD.0000000000000442

18. Mancini M, Chapurlat R, Isidor B, et al. Early-Onset Osteoporosis: Molecular Analysis in Large Cohort and Focus on the PLS3 Gene. Calcif Tissue Int. 2024;115(5):591-598. doi: https://doi.org/10.1007/s00223-024-01288-z.

19. Aliyeva L, Ongen YD, Eren E, et al. Genotype and Phenotype Correlation of Patients with Osteogenesis Imperfecta. J Mol Diagn. 2024;26(9):754-769. doi: https://doi.org/10.1016/j.jmoldx.2024.05.014

20. Costa A, Martins A, Machado C, et al. PLS3 Mutations in X-Linked Osteoporosis: Clinical and Genetic Features in Five New Families. Calcif Tissue Int. 2024;114(2):157-170. doi: https://doi.org/10.1007/s00223-023-01162-4

21. Kämpe AJ, Costantini A, Mäkitie RE, et al. PLS3 sequencing in childhood-onset primary osteoporosis identifies two novel disease-causing variants. Osteoporos Int. 2017;28(10):3023-3032. doi: https://doi.org/10.1007/s00198-017-4150-9

22. Shao C, Wang YW, He JW, Fu WZ, Wang C, Zhang ZL. Genetic variants in the PLS3 gene are associated with osteoporotic fractures in postmenopausal Chinese women. Acta Pharmacol Sin. 2019;40(9):1212-1218. doi: https://doi.org/10.1038/s41401-019-0219-7

23. Laine CM, Wessman M, Toiviainen-Salo S, et al. A novel splice mutation in PLS3 causes X-linked early onset low-turnover osteoporosis. J Bone Miner Res. 2015;30(3):510-518. doi: https://doi.org/10.1002/jbmr.2355

24. Wang L, Bian X, Cheng G, et al. A novel nonsense variant in PLS3 causes X-linked osteoporosis in a Chinese family. Ann Hum Genet. 2020;84(1):92-96. doi: https://doi.org/10.1111/ahg.12344

25. Välimäki VV, Mäkitie O, Pereira R, et al. Teriparatide Treatment in Patients With WNT1 or PLS3 Mutation-Related Early-Onset Osteoporosis: A Pilot Study. J Clin Endocrinol Metab. 2017;102(2):535-544. doi: https://doi.org/10.1210/jc.2016-2423

26. Neugebauer J, Heilig J, Hosseinibarkooie S, et al. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet. 2018;27(24):4249-4262. doi: https://doi.org/10.1093/hmg/ddy318

27. Wesseling-Perry K, Mäkitie RE, Välimäki VV, et al. Osteocyte Protein Expression Is Altered in Low-Turnover Osteoporosis Caused by Mutations in WNT1 and PLS3. J Clin Endocrinol Metab. 2017;102(7):2340-2348. doi: https://doi.org/10.1210/jc.2017-00099

28. Petit F, Longoni M, Wells J, et al. PLS3 missense variants affecting the actin-binding domains cause X-linked congenital diaphragmatic hernia and body-wall defects. Am J Hum Genet. 2023;110(10):1787-1803. doi: https://doi.org/10.1016/j.ajhg.2023.09.002

29. Fahiminiya S, Majewski J, Al-Jallad H, et al. Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J Bone Miner Res. 2014;29(8):1805-1814. doi: https://doi.org/10.1002/jbmr.2208

30. van de Laarschot DM, Zillikens MC. Atypical femur fracture in an adolescent boy treated with bisphosphonates for X-linked osteoporosis based on PLS3 mutation. Bone. 2016;91:148-151. doi: https://doi.org/10.1016/j.bone.2016.07.022

31. Kaifer KA, Villalón E, Osman EY, et al. Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy. JCI Insight. 2017;2(5):e89970. doi: https://doi.org/10.1172/jci.insight.89970

32. Yang YS, Xie J, Wang D, et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat Commun. 2019;10(1):2958. doi:10.1038/s41467-019-10809-6

33. Schindeler A, Lee LR, O’Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res. 2022;37(5):826-836. doi: https://doi.org/10.1002/jbmr.4549


Supplementary files

Review

For citations:


Mamedova E.O., Senyshkina E.S., Buryakina S.A., Tarasova E.V., Smirnov K.V., Salakhov R.R., Khusainova R.I., Belaya Zh.E. X-linked osteoporosis/osteogenesis imperfecta due to a PLS3 mutation: the first description in Russia. Osteoporosis and Bone Diseases. 2025;28(2):19-28. (In Russ.) https://doi.org/10.14341/osteo13201

Views: 33


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)