Clinical, laboratory and instrumental aspects of sarcopenia diagnostics
https://doi.org/10.14341/osteo13206
Abstract
Sarcopenia is an age-associated progressive loss of muscle mass and strength that leads to decreased functional activity, increased risk of falls, fractures, hospitalizations, and significantly contributes to disability and mortality in the elderly. There is no universal explanation for the development of sarcopenia. The mechanisms of muscle mass reduction include the influence of external (chronic diseases, physical inactivity, intake of certain medications, insufficient protein intake with food) and internal factors (age-related neuromuscular degeneration, changes in the level of anabolic hormones, chronic inflammation, and oxidative stress). The multifactorial pathogenesis of sarcopenia explains the lack of generally accepted diagnostic tools for this condition. The purpose of this review is to summarize current information on algorithms for assessing muscle strength, muscle mass, physical performance, and diagnostic criteria for sarcopenia by various research groups. The review describes options for laboratory markers that are promising and of interest in relation to diagnostics and determining the effectiveness of therapeutic and preventive interventions.
Keywords
About the Authors
A. S. ZhdanovaРоссия
Anastasiia S. Zhdanova, PhD student
117036, Russia, Moscow, Dmitria Uljanova street, 11
Z. E. Belaya
Россия
Zhanna E. Belaya, MD, PhD
Moscow
K. A. Omelchenko
Россия
Konstantin A. Omelchenko, PhD
Moscow
G. A. Airapetov
Россия
Georgii A. Airapetov, MD, PhD
Moscow
References
1. Cho MR, Lee S, Song SK. A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. Journal of Korean medical science. 2022; 9;37(18):e146. https://doi.org/10.3346/jkms.2022.37.e146
2. Kurmaev DP, Bulgakova SV, Treneva EV, et al. The Triple Burden of Osteoporosis, Sarcopenia, and Aging in Geriatrics (review). Russian Journal of Geriatric Medicine. 2024;3(19):225–239. https://doi.org/10.37586/2686-8636-3-2024-225-239
3. Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. Journal of Cachexia, Sarcopenia and Muscle. 2022;13(1):86-99. https://doi.org/10.1002/jcsm.12783
4. Paola Pisani, Alessandra Natale, Fiorella Anna Lombardi et al. International Journal of Bone Fragility. 2023; 3(1):41-46 https://doi.org/10.57582/IJBF.230301.041
5. Charlotte Beaudart, Julian Alcazar, Ivan Aprahamian, et al. Health outcomes of sarcopenia: a consensus report by the outcome working group of the Global Leadership Initiative in Sarcopenia (GLIS). Aging Clin Exp Res. 2025;37(1):100. https://doi.org/10.1007/s40520-025-02995-9
6. Grigorieva II, Raskina TA, Letaeva MV et al. Sarcopenia: pathogenesis and diagnosis. Fundamental and Clinical Medicine. 2019;4(4):105-116. (In Russ.) doi: https://doi.org/10.23946/2500-0764-2019-4-4-105-116
7. Grebennikova ТА, Tsoriev ТТ, Vorobyova YuR et al. Osteosarcopenia: Pathogenesis, Diagnosis and Therapeutic Approaches. Annals of the Russian Academy of Medical Sciences. 2020;75(3):240–249. (In Russ.) https://doi.org/10.15690/vramn1243
8. Sayer AA, Robinson SM, Patel HP, et al. New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing. 2013;42(2):145-150. https://doi.org/10.1093/ageing/afs191
9. Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying agerelated skeletal muscle wasting and weakness. Biogerontology. 2008;9(4):213-228. https://doi.org/10.1007/s10522-008-9131
10. Мокрышева Н.Г., Крупинова Ю.А., Володичева В.Л. и др. Саркопения глазами эндокринолога // Ожирение и метаболизм. 2018;15(3):21-27 [Mokrysheva NG, Krupinova YA, Volodicheva VL, et al. A view at sarcopenia by endocrinologist. Obesity and metabolism. 2018;15(3):21-27. (In Russ.) https://doi.org/10.14341/OMET9792
11. Toroptsova NV, Feklistov AYu. Musculoskeletal system pathology: focus on sarcopenia and osteosarcopenia. Meditsinsky Sovet. 2019;(4):78-86. (In Russ.) https://doi.org/10.21518/2079-701X-2019-4-78-86
12. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-23. https://doi.org/10.1093/ageing/afq034.
13. Golounina OO, Fadeev VV, Belaya Zh.E. Modern guidelines for the diagnosis of sarcopenia. Klinicheskaya meditsina. 2023;101(4–5):198–207 (In Russ.) https://doi.org/10. 30629/0023-2149-2023-101-4-5-198-207
14. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169
15. Landi F, Onder G, Russo A, et al. Calf circumference, frailty and physical performance among older adults living in the community. Clinical Nutrition. 2014;33(3):539-44. https://doi.org/10.1016/j.clnu.2013.07.013
16. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association. 2014;15(2):95-101. https://doi.org/10.1016/j.jamda.2013.11.025
17. Cho MR, Lee S, Song SK. A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. Journal of korean medical science. 2022;9;37(18):e146. https://doi.org/10.3346/jkms.2022.37.e146
18. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association. 2020;21(3):300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012
19. Bhasin S, Travison TG, Manini TM, et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. Journal of the American Geriatrics Society. 2020;68(7):1410-1418. https://doi.org/10.1111/jgs.16372
20. Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. Journal of Cachexia, Sarcopenia and Muscle. 2016;7(5):512-514. https://doi.org/10.1002/jcsm.12147
21. Sayer AA, Cruz-Jentoft A. Sarcopenia definition, diagnosis and treatment: consensus is growing. Age Ageing. 2022;6;51(10). https://doi.org/10.1093/ageing/afac220
22. Clinical practice guidelines for sarcopenia in elderly and senile patients. 1-95 (In Russ.)
23. Bian A, Ma Y, Zhou X et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disorders. 2020;7;21(1):214. https://doi.org/10.1186/s12891-020-03236-y
24. Picca A, Calvani R, Bossola M et al. Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. The Journal of Biological Chemistry. 2018;399(5):421-436. https://doi.org/10.1515/hsz-2017-0331
25. Aurélie Ladang, Charlotte Beaudart, JeanYves Reginster, et al. Calcified Tissue International. 2023; 112:197–217. doi: https://doi.org/10.1007/s00223-022-01054-z
26. Tay L, Ding YY, Leung BP et al. Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. GeroScience Official Journal of the American Aging Association. 2015;37(6):121. https://doi.org/10.1007/s11357-015-9860-3м
27. Shin HE, Walston JD, Kim M, et al. Sex-Specific Differences in the Effect of Free Testosterone on Sarcopenia Components in Older Adults. Frontiers in Endocrinology (Lausanne). 2021;22;12:695614. https://doi.org/10.3389/fendo.2021.695614
28. Baczek J, Silkiewicz M, Wojszel ZB. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients. 2020;11;12(8):2401. https://doi.org/10.3390/nu12082401
29. Hofmann M, Halper B, Oesen S, et al. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Experimental Gerontology. 2015;64:35-45. https://doi.org/10.1016/j.exger.2015.02.008
30. Bergen HR 3rd, Farr JN, Vanderboom PM, et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle. 2015;15;5:21. https://doi.org/10.1186/s13395-015-0047-5
31. Du Y, Xu C, Shi H, et al. Serum concentrations of oxytocin, DHEA and follistatin are associated with osteoporosis or sarcopenia in community-dwelling postmenopausal women. BMC Geriatrics. 2021;12;21(1):542. https://doi.org/10.1186/s12877-021-02481-7
32. Fife E, Kostka J, Kroc Ł, et al. Relationship of muscle function to circulating myostatin, follistatin and GDF11 in older women and men. BMC Geriatrics. 2018;18(1):200. https://doi.org/10.1186/s12877-018-0888-y
33. Bagheri R, Moghadam BH, Church DD, et al. The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Experimental Gerontology. 2020;133:110869. https://doi.org/10.1016/j.exger.2020.110869
34. Kuivaniemi H, Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene. 2019;30;707:151-171. https://doi.org/10.1016/j.gene.2019.05.003
35. Shin HE, Kim M, Won CW. Association between plasma procollagen type III N-terminal peptide (P3NP) levels and physical performance in elderly men: The Korean Frailty and Aging Cohort Study (KFACS). Experimental Gerontology. 2021;15;154:111523. https://doi.org/10.1016/j.exger.2021.111523
36. Kashani KB, Frazee EN, Kukrálová L, et al. Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine. 2017;45(1): e23-e29. https://doi.org/10.1097/CCM.0000000000002013
37. тно-мышечной системы при эндогенном гиперкортицизме. // Остеопороз и остеопатии. — 2012. — Т.15. — №3. — С.18-24. [Dragunova NV, Belaya ZhE, Rozhinskaya LYa. Musculoskeletal system in the endogenous hypercortisolism. Osteoporosis and Bone Diseases. 2012;15(3):18-24. (In Russ.) doi: https://doi.org/10.14341/osteo2012318-24
38. Katsuhara S, Yokomoto-Umakoshi M, Umakoshi H, et al. Impact of Cortisol on Reduction in Muscle Strength and Mass: A Mendelian Randomization Study. The Journal of Clinical Endocrinology and Metabolism. 2022;24;107(4):1477-1487. https://doi.org/10.1210/clinem/dgab862
39. Yamada M, Nishiguchi S, Fukutani N, et al. Mail-Based Intervention for Sarcopenia Prevention Increased Anabolic Hormone and Skeletal Muscle Mass in Community-Dwelling Japanese Older Adults: The INE (Intervention by Nutrition and Exercise) Study. Journal of the American Medical Directors Association. 2015;1;16(8):654-60. https://doi.org/10.1016/j.jamda.2015.02.017
40. Schaap LA, Pluijm SM, Deeg DJ, et al. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. The American Journal of Medicine. 2006;119(6): 526.e9-17. https://doi.org/10.1016/j.amjmed.2005.10.049
41. Park CH, Do JG, Lee YT, et al. Sarcopenic obesity associated with high-sensitivity C-reactive protein in age and sex comparison: a two-center study in South Korea. BMJ Open. 2018;19;8(9):e021232. https://doi.org/10.1136/bmjopen-2017-021232
42. Hang KV, Wu WT, Chen YH, et al. Enhanced serum levels of tumor necrosis factor-α, interleukin-1β, and -6 in sarcopenia: alleviation through exercise and nutrition intervention. Aging. 2023;15(22):13471-13485. https://doi.org/10.18632/aging.205254
43. Lu, Wenhao Feng, Wenjie, et al. Role of adipokines in sarcopenia. Chinese Medical Journal. 2023;136(15):1794-1804. https://doi.org/10.1097/CM9.0000000000002255
44. Rebalka IA, Monaco CMF, Varah NE, et al. Loss of the adipokine lipocalin-2 impairs satellite cell activation and skeletal muscle regeneration. Am J Physiol Cell Physiol. 2018;315(5):C714-C721. https://doi.org/10.1152/ajpcell.00195.2017
Supplementary files
Review
For citations:
Zhdanova A.S., Belaya Z.E., Omelchenko K.A., Airapetov G.A. Clinical, laboratory and instrumental aspects of sarcopenia diagnostics. Osteoporosis and Bone Diseases. 2025;28(3):12-23. (In Russ.) https://doi.org/10.14341/osteo13206
JATS XML
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
































