Preview

Osteoporosis and Bone Diseases

Advanced search

THE ENDOCRINE FUNCTION OF THE BONE TISSUE

https://doi.org/10.14341/osteo2015128-37

Abstract

This review discusses the recent evidence showing that the skeleton itself produces at least two hormones: fibroblast growth factor 23 (FGF23) and osteocalcin. FGF23 is secreted by osteocytes in bone and acts on the kidney to inhibit 1-alpha-hydroxilation ofvitamin D and promote phosphorous excretion. The affinity of FGF23 to FGF receptor is low, but FGF23 binds to FGF receptor-Klotho complex with more affinity. Therefore, Klotho determines the kidney-specific action of FGF23. Increase in FGF23 or Klotho levels due to genetic defects or ectopic production results in low serum phosphorous levels in humans. Contrary to this, low FGF23 or Klotho levels lead to hypophosphatemia and ectopic calcification. Mouse genetics studies revealed that osteoblast product, osteocalcin, in its undercarboxylated stage acts on the pancreatic beta-cells to enhance insulin production and on peripheral tissues to increase glucose utilization as a result of increased insulin sensitivity and to reduce visceral fat. In addition to this, undercarboxylated osteocalcin may also have another hormonal role, this time as a mediator of testosterone secretion. Osteocalcin was shown to induce testosterone production in Leydig cells of the testes both in ex vivo and in vivo studies. In both localizations, at the pancreas and at the testes osteocalcin acts through the GPCR6A receptor, this activates the cAMP response element-binding protein signaling pathway. Thus, this review reports the recent studies indicating bone ’s role as an endocrine organ.

References

1. Дедов И.И., Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я.: «Остеопороз - от редкого симптома эндокринных болезней до безмолвной эпидемии 20-21 века» // Ж. Проблемы Эндокринологии, 2011, том 57, стр. 35-45,

2. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. «Современные представления о действии тиреоидных гормонов и тиреотропного гормона на костную ткань» Ж. Проблемы эндокринологии, 2006 том 52 № 1, стр. 48-54

3. Schwetz V., Pieber V., Obermayer-Pietsch. The endocrine role of the skeleton: background and clinical evidence. Eur J Endocrinol. 2012 Jun; 166(6): 959-67. doi: 10.1530/EJE-12-0030.

4. Fukumoto S., Martin T.J. Bone as an endocrine organ. Trends Endocrinol Metab. 2009 Jul; 20(5): 230-6. doi: 10.1016/j. tem.2009.02.001.

5. Shalhoub V., Shatzen E.M., Ward S.C. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012 Jul 2; 122(7): 25432553. doi: 10.1172/JCI61405,

6. Carpenter T.O., Imel E.A., Ruppe M.D. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014 Apr; 124(4): 1587-97. doi: 10.1172/JCI72829

7. Vervloet M.G., Massy Z.A., Brandenburg V.M. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol. 2014 May; 2(5): 427-36. doi: 10.1016/S2213-8587(14)70059-2.

8. Yamashita T., Yoshioka M., Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000 Oct 22; 277(2): 494-8.

9. Goetz R., Beenken A., Ibrahimi O.A. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007 May; 27(9): 3417-28.

10. Martin A., Quarles L.D. Evidence for FGF23 involvement in a bone-kidney axis regulating bone mineralization and systemic phosphate and vitamin D homeostasis. Adv Exp Med Biol. 2012; 728: 65-83. doi: 10.1007/978-1-4614-0887-1_4.

11. Hu M.C., Kuro-o M., Moe O.W. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012; 728: 126-57. doi: 10.1007/978-1-4614-0887-1_9.

12. Urakawa I., Yamazaki Y., Shimada T. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006 Dec 7; 444(7120): 770-4. Epub 2006 Oct 29.

13. Yu X., Ibrahimi O.A., Goetz R. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology. 2005 Nov; 146(11): 4647-56.

14. Li S.A., Watanabe M., Yamada H. et al. Immunohistochemical localization of Klotho protein in brain, kidney and reproductive organs of mice. Cell Struct Funct. 2004 Dec; 29(4): 91-9.

15. Yamazaki Y., Tamada T., Kasai N. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 2008; 23(9): 1509-18.

16. John G.B., Cheng C.Y, Kuro-o M. Role of Klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis. 2011 Jul; 58(1): 127-34. doi: 10.1053/j.ajkd.2010.12.027.

17. Martin A., David V., Darryl Quarles L. Regulation and function of the FGF23/Klotho endocrine pathways. Physiol Rev. 2012 Jan; 92(1): 131-55. doi: 10.1152/physrev.00002.2011.

18. Oliveira R.B., Cancela A.L.E., Gracioli F.G. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010 Feb; 5(2): 286-91. doi: 10.2215/CJN.05420709.

19. Kuro-o M., Matsumura Y., Aizawa H. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997 Nov 6; 390(6655): 45-51.

20. Мелентьева А.А., Барышева О.Ю., Везикова Н.Н. и др. Роль фактора роста фибробластов 23 и фактора Klotho в развитии минерально-костных нарушений при хронической болезни почек. Курский научно-практический вестник “Человек и его здоровье”. 2014. № 3. С. 102-109.

21. Ben-Dov I.Z., Galitzer H., Lavi-Moshayoff V. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007 Dec; 117(12): 4003-8.

22. Wang H., Yoshiko Y., Yamamoto R. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 2008; 23(6): 939-48.

23. Liu S., Zhou J., Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006; 291(1): E38-49.

24. Shimada T., Kakitani M., Yamazaki Y. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4): 561-8.

25. Sitara D., Razzaque M.S., Hesse M. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004; 23(7): 421-32.

26. Hesse M., Fröhlich L.F., Zeitz U. Ablation of vitamin D signaling rescues bone, mineral and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 2007; 26(2): 75-84.

27. Sitara D., Razzaque M.S., St-Arnaud R. Genetic ablation of vitamin d activation pathway reverses biochemical and skeletal anomalies in fgf-23-null animals. Am J Pathol 2006; 169(6): 2161-70.

28. Stubbs J., Liu S., Tang W. et al. Role of Hyperphosphatemia and 1,25(OH)2D3 in Vascular Calcifications and Mortality in FGF23 Null Mice. J Am Soc Nephrol 2007; 17: 689A.

29. Yilmaz M.I., Sonmez A., Saglam M. Comparison of calcium acetate and sevelamer on vascular function and fi broblast growth factor 23 in CKD patients: a randomized clinical trial. Am J Kidney Dis 2012; 59: 177-85.

30. Jovanovich A., Ix J.H., Gottdiener J., et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community-dwelling older adults. Atherosclerosis 2013; 231: 114-19.

31. The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet. 1995 Oct; 11(2): 130-6.

32. Feng J.Q., Ward L.M., Liu S. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006 Nov; 38(11): 1310-5.

33. Lorenz-Depiereux B., Bastepe M., Benet-Pagès A. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006 Nov; 38(11): 1248-50.

34. Riminucci M., Collins M.T., Fedarko N.S. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003 Sep; 112(5): 683-92.

35. Bai X.Y., Miao D., Goltzman D. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003; 278(11): 9843-9.

36. Benet-Pagès A., Lorenz-Depiereux B, Zischka H. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35(2): 455-62.

37. Lyles K.W., Burkes E.J., Ellis G.J. Genetic transmission of tumoral calcinosis: autosomal dominant with variable clinical expressivity. J Clin Endocrinol Metab 1985; 60(6): 1093-6.

38. Benet-Pagès A., Orlik P., Strom T.M. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005 Feb 1; 14(3): 385-90

39. Ichikawa S., Imel E.A., Kreiter M.L. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007 Sep; 117(9): 2684-91.

40. Topaz O., Shurman D.L., Bergman R. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004 Jun; 36(6): 579-

41. Epub 2004 May 9.

42. Razzaque M.S., Sitara D., Taguchi T. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006; 20(6): 720-2.

43. Liu S., Tang W., Zhou J. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 2006; 17(5): 1305-15.

44. Zhang F., Zhai G., Kato B.S. Association between KLOTHO gene and hand osteoarthritis in a female Caucasian population. Osteoarthritis Cartilage. 2007 Jun; 15(6): 624-9.

45. Шутов Е.В. Значение фактора роста фибробластов-23 у больных хронической болезнью почек - обзор современных исследований. Лечащий врач. - 2012. - № 8. - C. 12-16.

46. Добронравов В.А. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и Klotho. Нефрология. - 2011. - Т. 15, № 4. - С. 11-20.

47. Милованова Л.Ю., Милованов Ю.С., Козловская Л.В. Нарушения фосфорно-кальциевого обмена при хронической болезни почек III-V стадий. Клиническая нефрология. - 2011. - № 1. - С. 58-68.

48. Koizumi M., Komaba H., Nakanishi S. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2012 Feb; 27(2): 784-90. doi: 10.1093/ndt/gfr384.

49. Tebben PJ, Singh RJ, Clarke BL. Fibroblast growth factor 23, parathyroid hormone and 1alpha,25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin Proc 2004; 79(12): 1508-13.

50. Kawata T., Imanishi Y., Kobayashi K. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 2007; 18(10): 2683-8.

51. Saji F., Shiizaki K., Shimada S. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol 2009; 111(4): p59-66.

52. Xiao Z.S., Crenshaw M., Guo R. et al. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol 1998; 275(4 Pt 1): E700-8.

53. Liu S., Zhou J., Tang W. Pathogenic role of Fgf23 in Dmp1-null mice. Am J Physiol Endocrinol Metab 2008; 295(2): E254-61.

54. Liu S., Vierthaler L., Tang W. FGFR3 and FGFR4 do not mediate renal effectso of FGF23 in vivo. J Am Soc Nephrol. 2008 Dec; 19(12): 2342-50. doi: 10.1681/ASN.2007121301

55. Ogbureke K.U., Fisher L.W. Expression of SIBLINGs and their partner MMPs in salivary glands. J Dent Res 2004; 83(9): 664-70.

56. Goebel S., Lienau J., Rammoser U. et al. FGF23 is a putative marker for bone healing and regeneration. J Orthop Res. 2009 Sep; 27(9): 1141-6. doi: 10.1002/jor.20857.

57. Matsumura Y., Aizawa H., Shiraki-Iida T. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998; 242(3): 626-630.

58. Shiraki-Iida T., Aizawa H., Matsumura Y. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998 Mar 6; 424(1-2): 6-10.

59. Tohyama O., Imuxa A., Iwano A. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuxonides. J Biol Chem. 2004 Mar 12; 279(11): 9777-84

60. Chen C.D., Podvin S., Gillespie E. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA. 2007; 104(50): 19796-19801.

61. Bloch L., Sineshchekova O., Reichenbach D. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009; 583(19): 3221-3224.

62. Cha S.K., Hu M.C., Kurosu H. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol. 2009; 76(1): 38-46.

63. Cha S.K., Ortega B., Kurosu H. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA. 2008; 105(28): 9805-9810.

64. Hu M.C., Shi M., Zhang J. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24(9): 3438-3450.

65. Fukagawa M., Kazama J.J. With or without the kidney: the role of FGF23 in CKD. Nephrol Dial Transplant. 2005; 20(7): 1295-1298.

66. Weber T.J., Liu S., Indridason O.S. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003; 18(7): 1227-1234.

67. Nakatani T., Sarraj B., Ohnishi M. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23)-mediated regulation of systemic phosphate homeostasis. FASEB J. 2009; 23(2): 433-441.

68. Hu M.C., Shi M., Zhang J. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22(1): 124-136.

69. Jono S., Shioi A., Ikari Y. Vascular calcification in chronic kidney disease. J Bone Miner Metab. 2006; 24(2): 176-181.

70. London G.M. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol. 2003; 14 Suppl 4(9): S305-S309.

71. Liu H., Fergusson M.M., Castilho R.M. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007; 317(5839): 803-806.

72. De Oliveira R.M. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006; 580(24): 5753-5758.

73. Ming Chang Hu, Makoto Kuro-o, Orson W. Moe. Secreted Klotho and chronic disease. Adv Exp Med Biol. 2012; 728: 126-157. doi: 10.1007/978-1-4614-0887-1_9.

74. Nakamura T., Saito Y., Ohyama Y., et al. Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol. 2002; 89(2): 149-156.

75. Shimada T., Takeshita Y., Murohara T., et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004; 110(9): 1148-1155.

76. Taniyama Y., Morishita R. Does therapeutic angiogenesis overcome CKD? Hypertens Res. 2010; 33(2): 114-115.

77. Mu W., Long D.A., Ouyang X. Angiostatin over expression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am J Physiol Renal Physiol. 2009; 296(1): F145-F152.

78. Westerweel P.E., Hoefer I.E., Blankestijn P.J. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am J Physiol Renal Physiol. 2007; 292(4): F1132-F1140.

79. Sugiura H., Yoshida T., Kohei J., et al. TGF-ß Was Upregulated in Renal Fibrosis Model of Klotho Defect Mouse and Affected Renal Klotho Expression Level (Abstract). J Am Soc Nephrol. 2010; 21: 376A.

80. Zeisberg M., Hanai J., Sugimoto H., et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003; 9(7): 964-968.

81. Iwano M. EMT and TGF-beta in renal fibrosis. Front Biosci (Schol Ed). 2010; 2: 229-238.

82. Sato M., Muragaki Y., Saika S. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest.2003; 112(10): 1486-1494.

83. Takeshita K., Yamamoto K., Ito M. Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, «Klotho» mouse. Semin Thromb Hemost.2002; 28(6): 545-554.

84. Krajisnik T., Olauson H., Mirza M.A. Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int. 2010; 78(10): 1024-1032.

85. Canalejo R., Canalejo A., Martinez-Moreno J.M. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol. 2010; 21(7): 1125-1135.

86. Tomida K., Hamano T., Mikami S., et al. Serum 25-hydroxy vitamin D as an independent determinant of 1-84 PTH and bone mineral density in nondiabetic predialysis CKD patients. Bone. 2009; 44(4): 678-683.

87. Jassal S.K., von Muhlen D., Barrett-Connor E. Measures of renal function, BMD, bone loss, and osteoporotic fracture in older adults: the Rancho Bernardo study. J Bone Miner Res. 2007; 22(2): 203-210.

88. Yamazaki Y., Imura A., Urakawa I. et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects.Biochem Biophys Res Commun. 2010; 398(3): 513-518.

89. Appledorn D.M., Seregin S., Amalfitano A. Adenovirus vectors for renal-targeted gene delivery. Contrib Nephrol. 2008; 159: 47-62.

90. Imai E. Gene therapy approach in renal disease in the 21st century. Nephrol Dial Transplant. 2001; 16(Suppl 5): 26-34.

91. Huang C.L. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 2010; 77(10): 855-860.

92. Kurosu H., Ogawa Y., Miyoshi M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281(10): 6120-6123.

93. Hu M.C., Shi M., Zhang J. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010; 78(12): 1240-1251.

94. Mitani H., Ishizaka N., Aizawa T. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002; 39(4): 838-843.

95. London G.M., Guerin A.P., Marchais S.J., Metivier F., Pannier B., Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003; 18(9): 1731-1740. doi: 10.1093/ndt/gfg414.

96. Nitta K., et al. Left ventricular hypertrophy is associated with arterial stiffness and vascular calcification in hemodialysis patients. Hypertens Res. 2004; 27(1): 47-52. doi: 10.1291/hypres.27.47.

97. Chertow G.M., Raggi P., Chasan-Taber S., Bommer J., Holzer H., Burke S.K. Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant. 2004; 19(6): 1489-1496. doi: 10.1093/ndt/gfh125.

98. Block G.A., Hulbert-Shearon T.E., Levin N.W. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998; 31(4): 607-617. doi: 10.1053/ajkd.1998.v31.pm9531176.

99. Sambrook P.N., Chen J.S., March L.M. Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study. J Clin Endocrinol Metab. 2004; 89(11): 5477-5481. doi: 10.1210/jc.2004-0307.

100. Fliser D., Kollerits B., Neyer U. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007; 18(9): 2600-2608. doi: 10.1681/ASN.2006080936.

101. Gutiérrez O.M., Januzzi J.L., Isakova T. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009; 119(19): 2545-2552. doi: 10.1161/ CIRCULATIONAHA. 108.844506

102. Seiler S., Reichart B., Roth D. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010; 25(12): 3983-3989. doi: 10.1093/ndt/gfq309.

103. Jean G., Terrat J.C., Vanel T. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant. 2009; 24(9): 2792-2796. doi: 10.1093/ndt/gfp191.

104. Sun N., Guo Y., Liu W. FGF23 neutralization improves bone quality and osseointegration of titanium implants in chronic kidney disease mice. Sci Rep. 2015 Feb 10; 5: 8304. doi: 10.1038/srep08304.

105. Lee A.J., Hodges S., Eastell R. Measuremant of osteocalcin. Ann Clin Biochem. 2000 Jul; 37 ( Pt 4): 432-46.

106. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., Ильин А.В., Драгунова Н.В., Колесникова Г.С., Бутрова С.А., Трошина Е.А.: Возможности маркёра костного обмена - остеокальцина - для диагностики эндогенного гиперкортицизма и вторичного остеопороза. // Ж. Остеопороз и Остеопатии, 2011, № 2, стр. 7-10

107. Delmas P.D., Malaval L., Arlot M.E. Serum bone Glaprotein compared to bone histomorphometry in endocrine diseases. Bone. 1985; 6(5): 339-41.

108. Charles P., Poser J.W., Mosekilde L. Estimation of bone turnover evaluated by 47Ca-kinetics. Efficiency of serum bone gammacarboxyglutamic acid-containing protein, serum alkaline phosphatase, and urinary hydroxyproline excretion. J Clin Invest. 1985 Dec; 76(6): 2254-8.

109. Ducy P., Desbois C., Boyce B. et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996 Aug 1; 382(6590): 448-52

110. Lee, N.K. и Karsenty, G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab. 2008 Jul; 19(5): 161-6. doi: 10.1016/j.tem.2008.02.006

111. Wellendorph P., Bräuner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 2004; 335: 37-46

112. Lee N.K., Sowa H., Hinoi E. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-69.

113. Ferron M., Hinoi E., Karsenty G. et al. (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008 Apr 1; 105(13): 5266-70. doi: 10.1073/pnas.0711119105

114. Shi Y., Yadav V.K., Suda N. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008 Dec 23; 105(51): 20529-33. doi: 10.1073/pnas.0808701106

115. Hinoi E., Gao N., Jung D.Y. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008 Dec 29; 183(7): 1235-42. doi: 10.1083/jcb.200809113

116. Booth S.L., Centi A., Smith S.R. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol 2013; 9: 43-55.

117. Sokoll L.J., Booth S.L., O’Brien M.E. et al. Changes in serum osteocalcin, plasma phylloquinone, and urinary y-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjects. Am J Clin Nutr 1997; 65: 779-84.

118. Kindblom J.M., Ohlsson C., Ljunggren O. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009 May; 24(5): 785-91. doi: 10.1359/jbmr.081234.

119. Pittas A.G., Harris S.S., Eliades M. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab. 2009 Mar; 94(3): 827-32. doi: 10.1210/ jc.2008-1422.

120. Im J.A., Yu B.P., Jeon J.Y. et al. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta. 2008 Oct; 396(1-2): 66-9. doi: 10.1016/j.cca.2008.07.001

121. Fernândez-Real J.M., Izquierdo M., Ortega F. et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab. 2009 Jan; 94(1): 237-45. doi: 10.1210/jc.2008-0270.

122. Patti A., Gennari L., Merlotti D. et al. Endocrine Actions of Osteocalcin. Int J Endocrinol. 2013; 2013: 846480. doi: 10.1155/2013/846480.

123. Oury F., Sumara G., Sumara O. Endocrine regulation of male fertility by the skeleton. Cell. 2011 Mar 4; 144(5): 796-809. doi: 10.1016/j.cell.2011.02.004.

124. Kirmani S., Atkinson E.J., Melton L.J. 3rd et al. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res. 2011 Sep; 26(9): 2212-6. doi: 10.1002/jbmr.421.

125. Kanazawa I., Tanaka K., Ogawa N. et al. Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type I diabetes mellitus. Osteoporos Int. 2013 Mar; 24(3): 1115-9. doi: 10.1007/s00198-012-2017-7.

126. Hannemann A., Breer S., Wallaschofski H. Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology. 2013 May; 1(3): 469-74. doi: 10.1111/j.2047-2927.2012.00044.x.

127. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002 May 25; 359(9320): 1841-50.


Review

For citations:


Grebennikova T.A., Belaya Zh.E., Tsoriev T.T., Rozhinskaya L.Ya., Melnichenko G.A. THE ENDOCRINE FUNCTION OF THE BONE TISSUE. Osteoporosis and Bone Diseases. 2015;18(1):28-37. (In Russ.) https://doi.org/10.14341/osteo2015128-37

Views: 4859


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)