THE ENDOCRINE FUNCTION OF THE BONE TISSUE
https://doi.org/10.14341/osteo2015128-37
Abstract
References
1. Дедов И.И., Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я.: «Остеопороз - от редкого симптома эндокринных болезней до безмолвной эпидемии 20-21 века» // Ж. Проблемы Эндокринологии, 2011, том 57, стр. 35-45,
2. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. «Современные представления о действии тиреоидных гормонов и тиреотропного гормона на костную ткань» Ж. Проблемы эндокринологии, 2006 том 52 № 1, стр. 48-54
3. Schwetz V., Pieber V., Obermayer-Pietsch. The endocrine role of the skeleton: background and clinical evidence. Eur J Endocrinol. 2012 Jun; 166(6): 959-67. doi: 10.1530/EJE-12-0030.
4. Fukumoto S., Martin T.J. Bone as an endocrine organ. Trends Endocrinol Metab. 2009 Jul; 20(5): 230-6. doi: 10.1016/j. tem.2009.02.001.
5. Shalhoub V., Shatzen E.M., Ward S.C. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012 Jul 2; 122(7): 25432553. doi: 10.1172/JCI61405,
6. Carpenter T.O., Imel E.A., Ruppe M.D. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014 Apr; 124(4): 1587-97. doi: 10.1172/JCI72829
7. Vervloet M.G., Massy Z.A., Brandenburg V.M. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol. 2014 May; 2(5): 427-36. doi: 10.1016/S2213-8587(14)70059-2.
8. Yamashita T., Yoshioka M., Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000 Oct 22; 277(2): 494-8.
9. Goetz R., Beenken A., Ibrahimi O.A. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007 May; 27(9): 3417-28.
10. Martin A., Quarles L.D. Evidence for FGF23 involvement in a bone-kidney axis regulating bone mineralization and systemic phosphate and vitamin D homeostasis. Adv Exp Med Biol. 2012; 728: 65-83. doi: 10.1007/978-1-4614-0887-1_4.
11. Hu M.C., Kuro-o M., Moe O.W. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012; 728: 126-57. doi: 10.1007/978-1-4614-0887-1_9.
12. Urakawa I., Yamazaki Y., Shimada T. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006 Dec 7; 444(7120): 770-4. Epub 2006 Oct 29.
13. Yu X., Ibrahimi O.A., Goetz R. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology. 2005 Nov; 146(11): 4647-56.
14. Li S.A., Watanabe M., Yamada H. et al. Immunohistochemical localization of Klotho protein in brain, kidney and reproductive organs of mice. Cell Struct Funct. 2004 Dec; 29(4): 91-9.
15. Yamazaki Y., Tamada T., Kasai N. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 2008; 23(9): 1509-18.
16. John G.B., Cheng C.Y, Kuro-o M. Role of Klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis. 2011 Jul; 58(1): 127-34. doi: 10.1053/j.ajkd.2010.12.027.
17. Martin A., David V., Darryl Quarles L. Regulation and function of the FGF23/Klotho endocrine pathways. Physiol Rev. 2012 Jan; 92(1): 131-55. doi: 10.1152/physrev.00002.2011.
18. Oliveira R.B., Cancela A.L.E., Gracioli F.G. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010 Feb; 5(2): 286-91. doi: 10.2215/CJN.05420709.
19. Kuro-o M., Matsumura Y., Aizawa H. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997 Nov 6; 390(6655): 45-51.
20. Мелентьева А.А., Барышева О.Ю., Везикова Н.Н. и др. Роль фактора роста фибробластов 23 и фактора Klotho в развитии минерально-костных нарушений при хронической болезни почек. Курский научно-практический вестник “Человек и его здоровье”. 2014. № 3. С. 102-109.
21. Ben-Dov I.Z., Galitzer H., Lavi-Moshayoff V. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007 Dec; 117(12): 4003-8.
22. Wang H., Yoshiko Y., Yamamoto R. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 2008; 23(6): 939-48.
23. Liu S., Zhou J., Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006; 291(1): E38-49.
24. Shimada T., Kakitani M., Yamazaki Y. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4): 561-8.
25. Sitara D., Razzaque M.S., Hesse M. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004; 23(7): 421-32.
26. Hesse M., Fröhlich L.F., Zeitz U. Ablation of vitamin D signaling rescues bone, mineral and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 2007; 26(2): 75-84.
27. Sitara D., Razzaque M.S., St-Arnaud R. Genetic ablation of vitamin d activation pathway reverses biochemical and skeletal anomalies in fgf-23-null animals. Am J Pathol 2006; 169(6): 2161-70.
28. Stubbs J., Liu S., Tang W. et al. Role of Hyperphosphatemia and 1,25(OH)2D3 in Vascular Calcifications and Mortality in FGF23 Null Mice. J Am Soc Nephrol 2007; 17: 689A.
29. Yilmaz M.I., Sonmez A., Saglam M. Comparison of calcium acetate and sevelamer on vascular function and fi broblast growth factor 23 in CKD patients: a randomized clinical trial. Am J Kidney Dis 2012; 59: 177-85.
30. Jovanovich A., Ix J.H., Gottdiener J., et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community-dwelling older adults. Atherosclerosis 2013; 231: 114-19.
31. The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet. 1995 Oct; 11(2): 130-6.
32. Feng J.Q., Ward L.M., Liu S. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006 Nov; 38(11): 1310-5.
33. Lorenz-Depiereux B., Bastepe M., Benet-Pagès A. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006 Nov; 38(11): 1248-50.
34. Riminucci M., Collins M.T., Fedarko N.S. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003 Sep; 112(5): 683-92.
35. Bai X.Y., Miao D., Goltzman D. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003; 278(11): 9843-9.
36. Benet-Pagès A., Lorenz-Depiereux B, Zischka H. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35(2): 455-62.
37. Lyles K.W., Burkes E.J., Ellis G.J. Genetic transmission of tumoral calcinosis: autosomal dominant with variable clinical expressivity. J Clin Endocrinol Metab 1985; 60(6): 1093-6.
38. Benet-Pagès A., Orlik P., Strom T.M. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005 Feb 1; 14(3): 385-90
39. Ichikawa S., Imel E.A., Kreiter M.L. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007 Sep; 117(9): 2684-91.
40. Topaz O., Shurman D.L., Bergman R. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004 Jun; 36(6): 579-
41. Epub 2004 May 9.
42. Razzaque M.S., Sitara D., Taguchi T. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006; 20(6): 720-2.
43. Liu S., Tang W., Zhou J. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 2006; 17(5): 1305-15.
44. Zhang F., Zhai G., Kato B.S. Association between KLOTHO gene and hand osteoarthritis in a female Caucasian population. Osteoarthritis Cartilage. 2007 Jun; 15(6): 624-9.
45. Шутов Е.В. Значение фактора роста фибробластов-23 у больных хронической болезнью почек - обзор современных исследований. Лечащий врач. - 2012. - № 8. - C. 12-16.
46. Добронравов В.А. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и Klotho. Нефрология. - 2011. - Т. 15, № 4. - С. 11-20.
47. Милованова Л.Ю., Милованов Ю.С., Козловская Л.В. Нарушения фосфорно-кальциевого обмена при хронической болезни почек III-V стадий. Клиническая нефрология. - 2011. - № 1. - С. 58-68.
48. Koizumi M., Komaba H., Nakanishi S. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2012 Feb; 27(2): 784-90. doi: 10.1093/ndt/gfr384.
49. Tebben PJ, Singh RJ, Clarke BL. Fibroblast growth factor 23, parathyroid hormone and 1alpha,25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin Proc 2004; 79(12): 1508-13.
50. Kawata T., Imanishi Y., Kobayashi K. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 2007; 18(10): 2683-8.
51. Saji F., Shiizaki K., Shimada S. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol 2009; 111(4): p59-66.
52. Xiao Z.S., Crenshaw M., Guo R. et al. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol 1998; 275(4 Pt 1): E700-8.
53. Liu S., Zhou J., Tang W. Pathogenic role of Fgf23 in Dmp1-null mice. Am J Physiol Endocrinol Metab 2008; 295(2): E254-61.
54. Liu S., Vierthaler L., Tang W. FGFR3 and FGFR4 do not mediate renal effectso of FGF23 in vivo. J Am Soc Nephrol. 2008 Dec; 19(12): 2342-50. doi: 10.1681/ASN.2007121301
55. Ogbureke K.U., Fisher L.W. Expression of SIBLINGs and their partner MMPs in salivary glands. J Dent Res 2004; 83(9): 664-70.
56. Goebel S., Lienau J., Rammoser U. et al. FGF23 is a putative marker for bone healing and regeneration. J Orthop Res. 2009 Sep; 27(9): 1141-6. doi: 10.1002/jor.20857.
57. Matsumura Y., Aizawa H., Shiraki-Iida T. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998; 242(3): 626-630.
58. Shiraki-Iida T., Aizawa H., Matsumura Y. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998 Mar 6; 424(1-2): 6-10.
59. Tohyama O., Imuxa A., Iwano A. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuxonides. J Biol Chem. 2004 Mar 12; 279(11): 9777-84
60. Chen C.D., Podvin S., Gillespie E. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA. 2007; 104(50): 19796-19801.
61. Bloch L., Sineshchekova O., Reichenbach D. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009; 583(19): 3221-3224.
62. Cha S.K., Hu M.C., Kurosu H. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol. 2009; 76(1): 38-46.
63. Cha S.K., Ortega B., Kurosu H. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA. 2008; 105(28): 9805-9810.
64. Hu M.C., Shi M., Zhang J. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24(9): 3438-3450.
65. Fukagawa M., Kazama J.J. With or without the kidney: the role of FGF23 in CKD. Nephrol Dial Transplant. 2005; 20(7): 1295-1298.
66. Weber T.J., Liu S., Indridason O.S. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003; 18(7): 1227-1234.
67. Nakatani T., Sarraj B., Ohnishi M. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23)-mediated regulation of systemic phosphate homeostasis. FASEB J. 2009; 23(2): 433-441.
68. Hu M.C., Shi M., Zhang J. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22(1): 124-136.
69. Jono S., Shioi A., Ikari Y. Vascular calcification in chronic kidney disease. J Bone Miner Metab. 2006; 24(2): 176-181.
70. London G.M. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol. 2003; 14 Suppl 4(9): S305-S309.
71. Liu H., Fergusson M.M., Castilho R.M. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007; 317(5839): 803-806.
72. De Oliveira R.M. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006; 580(24): 5753-5758.
73. Ming Chang Hu, Makoto Kuro-o, Orson W. Moe. Secreted Klotho and chronic disease. Adv Exp Med Biol. 2012; 728: 126-157. doi: 10.1007/978-1-4614-0887-1_9.
74. Nakamura T., Saito Y., Ohyama Y., et al. Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol. 2002; 89(2): 149-156.
75. Shimada T., Takeshita Y., Murohara T., et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004; 110(9): 1148-1155.
76. Taniyama Y., Morishita R. Does therapeutic angiogenesis overcome CKD? Hypertens Res. 2010; 33(2): 114-115.
77. Mu W., Long D.A., Ouyang X. Angiostatin over expression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am J Physiol Renal Physiol. 2009; 296(1): F145-F152.
78. Westerweel P.E., Hoefer I.E., Blankestijn P.J. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am J Physiol Renal Physiol. 2007; 292(4): F1132-F1140.
79. Sugiura H., Yoshida T., Kohei J., et al. TGF-ß Was Upregulated in Renal Fibrosis Model of Klotho Defect Mouse and Affected Renal Klotho Expression Level (Abstract). J Am Soc Nephrol. 2010; 21: 376A.
80. Zeisberg M., Hanai J., Sugimoto H., et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003; 9(7): 964-968.
81. Iwano M. EMT and TGF-beta in renal fibrosis. Front Biosci (Schol Ed). 2010; 2: 229-238.
82. Sato M., Muragaki Y., Saika S. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest.2003; 112(10): 1486-1494.
83. Takeshita K., Yamamoto K., Ito M. Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, «Klotho» mouse. Semin Thromb Hemost.2002; 28(6): 545-554.
84. Krajisnik T., Olauson H., Mirza M.A. Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int. 2010; 78(10): 1024-1032.
85. Canalejo R., Canalejo A., Martinez-Moreno J.M. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol. 2010; 21(7): 1125-1135.
86. Tomida K., Hamano T., Mikami S., et al. Serum 25-hydroxy vitamin D as an independent determinant of 1-84 PTH and bone mineral density in nondiabetic predialysis CKD patients. Bone. 2009; 44(4): 678-683.
87. Jassal S.K., von Muhlen D., Barrett-Connor E. Measures of renal function, BMD, bone loss, and osteoporotic fracture in older adults: the Rancho Bernardo study. J Bone Miner Res. 2007; 22(2): 203-210.
88. Yamazaki Y., Imura A., Urakawa I. et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects.Biochem Biophys Res Commun. 2010; 398(3): 513-518.
89. Appledorn D.M., Seregin S., Amalfitano A. Adenovirus vectors for renal-targeted gene delivery. Contrib Nephrol. 2008; 159: 47-62.
90. Imai E. Gene therapy approach in renal disease in the 21st century. Nephrol Dial Transplant. 2001; 16(Suppl 5): 26-34.
91. Huang C.L. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 2010; 77(10): 855-860.
92. Kurosu H., Ogawa Y., Miyoshi M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281(10): 6120-6123.
93. Hu M.C., Shi M., Zhang J. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010; 78(12): 1240-1251.
94. Mitani H., Ishizaka N., Aizawa T. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002; 39(4): 838-843.
95. London G.M., Guerin A.P., Marchais S.J., Metivier F., Pannier B., Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003; 18(9): 1731-1740. doi: 10.1093/ndt/gfg414.
96. Nitta K., et al. Left ventricular hypertrophy is associated with arterial stiffness and vascular calcification in hemodialysis patients. Hypertens Res. 2004; 27(1): 47-52. doi: 10.1291/hypres.27.47.
97. Chertow G.M., Raggi P., Chasan-Taber S., Bommer J., Holzer H., Burke S.K. Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant. 2004; 19(6): 1489-1496. doi: 10.1093/ndt/gfh125.
98. Block G.A., Hulbert-Shearon T.E., Levin N.W. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998; 31(4): 607-617. doi: 10.1053/ajkd.1998.v31.pm9531176.
99. Sambrook P.N., Chen J.S., March L.M. Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study. J Clin Endocrinol Metab. 2004; 89(11): 5477-5481. doi: 10.1210/jc.2004-0307.
100. Fliser D., Kollerits B., Neyer U. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007; 18(9): 2600-2608. doi: 10.1681/ASN.2006080936.
101. Gutiérrez O.M., Januzzi J.L., Isakova T. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009; 119(19): 2545-2552. doi: 10.1161/ CIRCULATIONAHA. 108.844506
102. Seiler S., Reichart B., Roth D. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010; 25(12): 3983-3989. doi: 10.1093/ndt/gfq309.
103. Jean G., Terrat J.C., Vanel T. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant. 2009; 24(9): 2792-2796. doi: 10.1093/ndt/gfp191.
104. Sun N., Guo Y., Liu W. FGF23 neutralization improves bone quality and osseointegration of titanium implants in chronic kidney disease mice. Sci Rep. 2015 Feb 10; 5: 8304. doi: 10.1038/srep08304.
105. Lee A.J., Hodges S., Eastell R. Measuremant of osteocalcin. Ann Clin Biochem. 2000 Jul; 37 ( Pt 4): 432-46.
106. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., Ильин А.В., Драгунова Н.В., Колесникова Г.С., Бутрова С.А., Трошина Е.А.: Возможности маркёра костного обмена - остеокальцина - для диагностики эндогенного гиперкортицизма и вторичного остеопороза. // Ж. Остеопороз и Остеопатии, 2011, № 2, стр. 7-10
107. Delmas P.D., Malaval L., Arlot M.E. Serum bone Glaprotein compared to bone histomorphometry in endocrine diseases. Bone. 1985; 6(5): 339-41.
108. Charles P., Poser J.W., Mosekilde L. Estimation of bone turnover evaluated by 47Ca-kinetics. Efficiency of serum bone gammacarboxyglutamic acid-containing protein, serum alkaline phosphatase, and urinary hydroxyproline excretion. J Clin Invest. 1985 Dec; 76(6): 2254-8.
109. Ducy P., Desbois C., Boyce B. et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996 Aug 1; 382(6590): 448-52
110. Lee, N.K. и Karsenty, G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab. 2008 Jul; 19(5): 161-6. doi: 10.1016/j.tem.2008.02.006
111. Wellendorph P., Bräuner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 2004; 335: 37-46
112. Lee N.K., Sowa H., Hinoi E. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-69.
113. Ferron M., Hinoi E., Karsenty G. et al. (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008 Apr 1; 105(13): 5266-70. doi: 10.1073/pnas.0711119105
114. Shi Y., Yadav V.K., Suda N. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008 Dec 23; 105(51): 20529-33. doi: 10.1073/pnas.0808701106
115. Hinoi E., Gao N., Jung D.Y. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008 Dec 29; 183(7): 1235-42. doi: 10.1083/jcb.200809113
116. Booth S.L., Centi A., Smith S.R. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol 2013; 9: 43-55.
117. Sokoll L.J., Booth S.L., O’Brien M.E. et al. Changes in serum osteocalcin, plasma phylloquinone, and urinary y-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjects. Am J Clin Nutr 1997; 65: 779-84.
118. Kindblom J.M., Ohlsson C., Ljunggren O. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009 May; 24(5): 785-91. doi: 10.1359/jbmr.081234.
119. Pittas A.G., Harris S.S., Eliades M. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab. 2009 Mar; 94(3): 827-32. doi: 10.1210/ jc.2008-1422.
120. Im J.A., Yu B.P., Jeon J.Y. et al. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta. 2008 Oct; 396(1-2): 66-9. doi: 10.1016/j.cca.2008.07.001
121. Fernândez-Real J.M., Izquierdo M., Ortega F. et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab. 2009 Jan; 94(1): 237-45. doi: 10.1210/jc.2008-0270.
122. Patti A., Gennari L., Merlotti D. et al. Endocrine Actions of Osteocalcin. Int J Endocrinol. 2013; 2013: 846480. doi: 10.1155/2013/846480.
123. Oury F., Sumara G., Sumara O. Endocrine regulation of male fertility by the skeleton. Cell. 2011 Mar 4; 144(5): 796-809. doi: 10.1016/j.cell.2011.02.004.
124. Kirmani S., Atkinson E.J., Melton L.J. 3rd et al. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res. 2011 Sep; 26(9): 2212-6. doi: 10.1002/jbmr.421.
125. Kanazawa I., Tanaka K., Ogawa N. et al. Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type I diabetes mellitus. Osteoporos Int. 2013 Mar; 24(3): 1115-9. doi: 10.1007/s00198-012-2017-7.
126. Hannemann A., Breer S., Wallaschofski H. Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology. 2013 May; 1(3): 469-74. doi: 10.1111/j.2047-2927.2012.00044.x.
127. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002 May 25; 359(9320): 1841-50.
Review
For citations:
Grebennikova T.A., Belaya Zh.E., Tsoriev T.T., Rozhinskaya L.Ya., Melnichenko G.A. THE ENDOCRINE FUNCTION OF THE BONE TISSUE. Osteoporosis and Bone Diseases. 2015;18(1):28-37. (In Russ.) https://doi.org/10.14341/osteo2015128-37

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).