Preview

Osteoporosis and Bone Diseases

Advanced search

Functional hypoparathyroidism: causes, pathogenesis, clinical significance in Bone tissue pathology

https://doi.org/10.14341/osteo9962

Abstract

Parathyroid hormone (PTH) regulates the maintenance of serum calcium concentration in strict limits through direct effects on bones and kidneys and indirectly due to the effect on the gastrointestinal tract. PTH also regulates phosphorus metabolism. Secondary hyperparathyroidism develops in response to a decreased serum calcium and vitamin D levels, leading to an increased bone resorption. However, the increase in parathyroid hormone above the reference values is not observed in all cases of vitamin D deficiency or hypocalcemia. Supressed or inadequately normal PTH in these conditions is referred to as functional hypoparathyroidism. Various theories have been suggested to explain the functional hypoparathyroidism: magnesium deficiency, intestinal calcistat, lower reference values for plasma PTH compared to current cut off interval, biological variations of vitamin D-binding protein. However, at present none of these theories are generally accepted. The clinical significance of functional hypoparathyroidism may be that vitamin D deficiency, hypocalcemia, and hypomagnesemia are associated with a risk of fracture, regardless PTH level.

About the Authors

Guzel M. Nurullina

Izhevsk State Medical Academy


Russian Federation

assistant professor



Guzyal I. Akhmadullina

Izhevsk State Medical Academy


Russian Federation

MD, PhD, assistant professor



Irina S. Maslova

The First Republican Clinical Hospital


Russian Federation

MD, PhD



References

1. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015;22:41-50. doi: 10.1016/j.coph.2015.03.005.

2. Civitelli R, Ziambaras K. Calcium and phosphate homeostasis: concerted interplay of new regulators. J Endocrinol Invest. 2011;34:3–7.

3. Bringhurst F, Demay M, Kronenberg H. Hormones and disorders of mineral metabolism. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams Textbook of Endocrinology. Vol. 1. Philadelphia: Saunders Elsevier; 2008. p.1203-1268.

4. Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract. Res. Clin. Rheumatol. 2008;22(1):129-148. doi: 10.1016/j.berh.2007.11.006.

5. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 2003;4(7):530-538. doi: 10.1038/nrm1154.

6. Gesek FA, Friedman PA. On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells. J. Clin. Invest. 1992;90(3):749-758. doi: 10.1172/JCI115947.

7. Kumar R, Thompson JR. The regulation of parathyroid hormone secretion and synthesis. J. Am. Soc. Nephrol. 2011;22(2):216-224. doi: 10.1681/ASN.2010020186.

8. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 2001;81(1):239-297. doi: 10.1152/physrev.2001.81.1.239.

9. Potts JT, Gardella TJ. Progress, paradox, and potential: parathyroid hormone research over five decades. Ann. N. Y. Acad. Sci. 2007;1117:196-208. doi: 10.1196/annals.1402.088.

10. Мирная С.С., Пигарова Е.А., Белаева А.В., и др. Роль кальций-чувствительного рецептора в поддержании системы кальциевого гомеостаза // Остеопороз и остеопатии. – 2010. – Т. 13. – №3. – C. 32-36. [Mirnaya SS, Pigarova EA, Belyaeva AV, et al. The role of the calcium-sensitive receptor in maintaining calcium homeostasis systems. Osteoporosis and bone diseases. 2010;13(3):32-36. (In Russ).] doi: 10.14341/osteo2010332-36

11. Habener JF, Kemper B, Potts JT, Jr. Calcium-dependent intracellular degradation of parathyroid hormone: a possible mechanism for the regulation of hormone stores. Endocrinology. 1975;97(2):431-441. doi: 10.1210/endo-97-2-431.

12. Morrissey JJ, Cohn DV. Secretion and degradation of parathormone as a function of intracellular maturation of hormone pools. J. Cell Biol. 1979;83(3):521. doi: 10.1083/jcb.83.3.521.

13. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 2003;4(7):530-538. doi: 10.1038/nrm1154.

14. Naveh-Many T, Sela-Brown A, Silver J. Protein-RNA interactions in the regulation of PTH gene expression by calcium and phosphate. Nephrology Dialysis Transplantation. 1999;14(4):811-813. doi: 10.1093/ndt/14.4.811.

15. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277:30337–30350. doi: 10.1074/jbc.M201804200

16. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015;22:41-50. doi: 10.1016/j.coph.2015.03.005.

17. Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell. Signal. 2009;21(8):1245-1254. doi: 10.1016/j.cellsig.2009.02.012.

18. Gardella TJ. Interactions of PTH with receptors and signaling. In: Bilezikian JP, Marcus RA, Marcocci LM, Silverberg C, Potts JT, editors. The Parathyroids. 3rd edition. SJ.Elsevier; 2015. p. 65-80.

19. Kousteni S, Bilezikian JP. The cell biology of parathyroid hormone in osteoblasts. Curr Osteoporos Rep. 2008;6:72–76. doi: 10.1007/s11914-008-0013-9

20. Vilardaga JP, Frank M, Krasel C, et al. Differential conformational requirements for activation of G proteins and the regulatory proteins arrestin and G protein-coupled receptor kinase in the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein. J. Biol. Chem.2001;276(36):33435-33443. doi: 10.1074/jbc.M011495200.

21. Gesty-Palmer D, Flannery P, Yuan L, et al. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci. Transl. Med. 2009;1(1):1ra1. doi: 10.1126/scitranslmed.3000071.

22. Xiong J, O’Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012;27(3):499–505. doi: 10.1002/jbmr.1547.

23. Kanzawa M, Sugimoto T, Kanatani M, Chihara K. Involvement of osteoprotegerin/osteoclastogenesis inhibitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. Eur J Endocrinol. 2000; 142:661–664.

24. O’Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone. 2013;54(2):258-63. doi: 10.1016/j.bone.2012.08.121.

25. Amouzougan A, Chopin F, Laporte S et al. Functional hypoparathyroidism in postmenopausal women with fragility fracture. Joint Bone Spine. 2012;79(2):170-175. doi: 10.1016/j.jbspin.2011.04.005.

26. Kannan S, Mahadevan S, Velayutham P, et al. Estimation of magnesium in patients with functional hypoparathyroidism. Indian J. Endocrinol. Metab. 2014;18(6):821-825. doi: 10.4103/2230-8210.141365.

27. Sahota O, Mundey MK, San P, Godber IM, Hosking DJ. Vitamin D insufficiency and the blunted PTH response in established osteoporosis: the role of magnesium deficiency. Osteoporos Int. 2006;17(7):1013–1021. doi: 10.1007/s00198-006-0084-3

28. Mutnuri S, Fernandez I, Kochar T. Suppression of Parathyroid Hormone in a Patient with Severe Magnesium Depletion. Case reports in nephrology. 2016;2016:2608538. doi: 10.1155/2016/2608538.

29. Freitag JJ, Martin KJ, Conrades MB, et al. Evidence for skeletal resistance to parathyroid hormone in magnesium deficiency. Studies in isolated perfused bone. J. Clin. Invest. 1979;64(5):1238-1244. doi: 10.1172/JCI109578.

30. Hansen BA, Bruserud O. Hypomagnesemia in critically ill patients. Journal of intensive care. 2018;6:21. doi: 10.1186/s40560-018-0291-y.

31. Егшатян Л.В. Функциональный гипопаратиреоз на фоне гипомагниемии при длительном приеме ингибитора протонной помпы // Остеопороз и остеопатии. – 2017. – Т. 20. – №3. – C. 102-107. [Egshatyan LV. Functional hypoparathyroidism secondary to magnesium deficiency in long-term users of proton pump inhibitor. Osteoporosis and bone diseases. 2018;20(3):102-107]. doi: 10.14341/osteo20173102-107;

32. Astor MC, Løvås K, Wolff ASB, et al. Hypomagnesemia and functional hypoparathyroidism due to novel mutations in the Mg-channel TRPM6. Endocrine Connections. 2015;4(4):215-222. doi: 10.1530/EC-15-0066.

33. Rude RK. Renal cortical adenylate cyclase: characterization of magnesium activation. Endocrinology. 1983;113(4):1348-1355. doi: 10.1210/endo-113-4-1348.

34. Gilman AG. Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 1984;73(1):1-4. doi: 10.1172/JCI111179.

35. C. Hermans, C. Lefebvre, J.-P. Devogelaer, M. Lambert. Hypocalcaemia and chronic alcohol intoxication: transient hypoparathyroidism secondary to magnesium deficiency. Clinical Rheumatology. 1996;15(2):193–196.

36. Kannan S, Mahadevan S, Velayutham P, et al. Estimation of magnesium in patients with functional hypoparathyroidism. Indian J. Endocrinol. Metab. 2014;18(6):821-825. doi: 10.4103/2230-8210.141365.

37. Barbagallo M, Di Bella G, Brucato V, et al. Serum ionized magnesium in diabetic older persons. Metabolism. 2014;63:502-509. doi: 10.1016/j.metabol.2013.12.003

38. Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World Journal of Diabetes. 2015;6(10):1152-1157. doi:10.4239/wjd.v6.i10.1152.

39. Garg MK. The intestinal calcistat. Indian J. Endocrinol. Metab. 2013;17(Suppl 1):S25-28. doi: 10.4103/2230-8210.119497.

40. Touvier M, Deschasaux M, Montourcy M, et al. Interpretation of plasma PTH concentrations according to 25OHD status, gender, age, weight status, and calcium intake: importance of the reference values. J. Clin. Endocrinol. Metab. 2014;99(4):1196-1203. doi: 10.1210/jc.2013-3349.

41. La'ulu SL, Roberts WL. Performance characteristics of six intact parathyroid hormone assays. Am. J. Clin. Pathol. 2010;134(6):930-938. doi: 10.1309/AJCPLGCZR7IPVHA7.

42. Rejnmark L, Vestergaard P, Heickendorff L, Mosekilde L. Determinants of plasma PTH and their implication for defining a reference interval. Clin. Endocrinol. (Oxf.). 2011;74(1):37-43. doi: 10.1111/j.1365-2265.2010.03894.x.

43. el-Hajj Fuleihan G, Klerman EB, Brown EN, et al. The parathyroid hormone circadian rhythm is truly endogenous--a general clinical research center study. J. Clin. Endocrinol. Metab. 1997;82(1):281-286. doi: 10.1210/jcem.82.1.3683.

44. Gutierrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos. Int. 2011;22(6):1745-1753. doi: 10.1007/s00198-010-1383-2.

45. Wang D, McCully ME, Luo Z, et al. Structural and functional consequences of cardiac troponin C L57Q and I61Q Ca(2+)-desensitizing variants. Arch Biochem Biophys. 2013;535:68–75. doi: 10.1016/j.abb.2013.02.006.

46. Ponda MP, McGee D, Breslow JL. Vitamin D-binding protein levels do not influence the effect of Vitamin D repletion on serum PTH and Calcium: Data from a randomized, controlled trial. J Clin Endocrinol Metab. 2014;99:2494–2499. doi: 10.1210/jc.2014-1181.

47. Yamauchi M, Kaji H, Nawata K, et al. Role of parathyroid hormone in bone fragility of postmenopausal women with vitamin D insufficiency. Calcif Tissue Int. 2011;88(5):362-9. doi: 10.1007/s00223-011-9464-6.

48. Tu SJ, Wang SP, Cheng FC, et al. Attenuating trabecular morphology associated with low magnesium diet evaluated using micro computed tomography. PLoS One. 2017;12(4):e0174806. doi: 10.1371/journal.pone.0174806.

49. Toba Y, Kajita Y, Masuyama R, et al. Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats. J. Nutr. 2000;130(2):216-220. doi: 10.1093/jn/130.2.216.

50. Welch AA, Skinner J, Hickson M. Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients. 2017;9(11):1189. doi: 10.3390/nu9111189.

51. Orchard TS, Larson JC, Alghothani N, et al. Magnesium intake, bone mineral density, and fractures: results from the Women's Health Initiative Observational Study. Am. J. Clin. Nutr. 2014;99(4):926-933. doi: 10.3945/ajcn.113.067488.

52. Farsinejad-Marj M, Saneei P, Esmaillzadeh A. Dietary magnesium intake, bone mineral density and risk of fracture: a systematic review and meta-analysis. Osteoporos. Int. 2016;27(4):1389-1399. doi: 10.1007/s00198-015-3400-y.


Supplementary files

1. Fig. 1. Changes in the parathyrocyte during the interaction of Ca2 + with CaSR.
Subject
Type Исследовательские инструменты
View (307KB)    
Indexing metadata ▾

Review

For citations:


Nurullina G.M., Akhmadullina G.I., Maslova I.S. Functional hypoparathyroidism: causes, pathogenesis, clinical significance in Bone tissue pathology. Osteoporosis and Bone Diseases. 2018;21(2):30-35. (In Russ.) https://doi.org/10.14341/osteo9962

Views: 20253


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)