Preview

Osteoporosis and Bone Diseases

Advanced search

Comparative evaluation of Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors influence on bone turnover markers in rats with experimental type 2 diabetes mellitus

https://doi.org/10.14341/osteo12926

Abstract

Background: Type 2 diabetes mellitus (DM) is accompanied by increased risk of osteoporotic fractures. Data on type 2 sodium-glucose co-transporter inhibitors (SGLT-2i) in fracture risk are contradictory. A simultaneous comparison of high- and low-selective SGLT-2i effects on bone turnover parameters with the effects of other drug classes has not been performed previously.

Aim: To evaluate and to compare the influence of empagliflozin (EMPA), canagliflozin (CANA) and sitagliptin (SITA) on bone remodeling parameters in type 2 diabetic rats.

Materials and methods: Type 2 DM was modelled in male Wistar rats by high-fat diet and strepTozotocin+nicotinamide injection. Four weeks after the following groups were formed: “DM” without treatment, as well as 8-week treatment with SITA 50 mg/kg (“DM+SITA”), CANA 25 mg/kg (“DM+CANA”), EMPA 2 mg/kg (“DM+EMPA”). Animals in “Control” group were not subjected to any interventions. Calcium, phosphorus, fibroblast growth factor-23 (FGF23), osteocalcin (OC), osteoprotegerin (OPG), RANKL concentrations were measured in the blood sampled at the end of the treatment, as well as bone histoarchitectonics was evaluated.

Results: Calcium concentration was higher in “DM+EMPA” group (2.79 (2.69; 2.83 mmol/L) comparing with “Control” (2.65 (2.53; 3.15)), phosphorus level in “DM+EMPA” was higher than in all other groups. FGF23 was decreased in “DM” group (0.24 (0.11; 0.31) pmol/L), while EMPA treatment was associated with higher FGF23 level (1.1 (0.62; 1.1). OC was lower in “DM” (10.69 (9.97; 11.03) ng/mL) than in “Control” group (49.1 (47.98; 54.57), treatment with SITA and EMPA was associated with increase in OC level (19.57 (18.85; 24.44) и 16.00 (15.72; 17.00), respectively), with OC concentration being higher in “DM+SITA” group. There were no differences in OPG and RANKL levels between “DM” and “Control” groups, whereas OPG was lower in “DM+CANA” (1.85 (1.19; 1.90) pmol/L) and “DM+EMPA” (1.26 (0.76; 1.88) than in “DM+SITA” (6.28 (3.05; 3.99). RANKL/OPG ratio was the highest in “DM+EMPA” and “DM+CANA” groups, with no significant between-group difference. In «DM+EMPA» and «DM+CANA» groups there was a decrease in the area of bone trabeculae in the epiphyseal part (56.70 (53.80; 58.05)% и 52.30 (50.50; 54.85)%) in comparison with “Control” group (62.30 (61.30; 64.20)%). All study drugs administration led to similarly satisfactory glycemic control.

Conclusion: SITA influence on bone remodeling is neutral, while EMPA and CANA administration leads to increase of bone resorption. Drugs’ influence on bone metabolism is not due to their effect on glycemic profile

About the Authors

N. V. Timkina
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Natalya V. Timkina; eLibrary SPIN: 6259-7745.

Saint-Petersburg


Competing Interests:

none



A. V. Simanenkova
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Anna V. Simanenkova, MD, PhD; eLibrary SPIN: 3675-9216.

2, Akkuratova street, 197341 St. Petersburg


Competing Interests:

none



T. L. Karonova
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Tatiana L. Karonova - MD, PhD, Professor; eLibrary SPIN: 3337-4071.

Saint-Petersburg


Competing Interests:

none



T. D. Vlasov
Pavlov First Saint-Petersburg State Medical University
Russian Federation

Timur D. Vlasov - MD, PhD, Professor; eLibrary SPIN: 8367-1246.

Saint-Petersburg


Competing Interests:

none



N. Yu. Semenova
Almazov National Medical Research Centre
Russian Federation

Natalya Yu. Semenova - PhD; eLibrary SPIN: 3566-4723.

Saint-Petersburg


Competing Interests:

none



А. A. Bairamov
Almazov National Medical Research Centre
Russian Federation

Alekber A. Bairamov - MD, PhD; eLibrary SPIN: 9802-9988.

Saint-Petersburg


Competing Interests:

none



V. A. Timofeeva
Almazov National Medical Research Centre
Russian Federation

Valeria A. Timofeeva; eLibrary SPIN: 5204-4164.

Saint-Petersburg


Competing Interests:

none



A. A. Shimshilashvili
Almazov National Medical Research Centre
Russian Federation

Anzhelika A. Shimshilashvili; eLibrary SPIN: 1645-0680.

Saint-Petersburg


Competing Interests:

none



E. V. Shlyakhto
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Evgeny V. Shlyakhto - MD, PhD, Professor, Academician of Russian Academy of Sciences; eLibrary SPIN: 6679-7621.

Saint-Petersburg


Competing Interests:

none



References

1. IDF Diabetes Atlas [Internet]. Available from: https://diabetesatlas.org/data/en/world/.

2. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019;22(S1):1-144 (In Russ.). doi: https://doi.org/10.14341/DM221S1

3. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461-2498. doi: https://doi.org/10.1007/s00125-018-4729-5

4. Poiana C, Capatina C. Osteoporosis and fracture risk in patients with type 2 diabetes mellitus. Acta Endocrinol (Buchar). 2019;15(2):231-236. doi: https://doi.org/10.4183/aeb.2019.231

5. Valderrábano RJ, Linares MI. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol. 2018;4:9. doi: https://doi.org/10.1186/s40842-018-0060-9

6. Ahmad OS, Leong A, Miller JA, et al. A Mendelian Randomization Study of the Effect of Type-2 Diabetes and Glycemic Traits on Bone Mineral Density. J Bone Miner Res. 2017;32(5):1072-1081. doi: https://doi.org/10.1002/jbmr.3063

7. Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115-23. doi: https://doi.org/10.1016/j.bone.2014.08.010

8. Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157-166. doi: https://doi.org/10.1210/jc.2015-3167

9. Simanenkova A, Minasian S, Karonova T, et al. Comparative evaluation of metformin and liraglutide cardioprotective effect in rats with impaired glucose tolerance. Sci Rep. 2021;11(1):6700. doi: https://doi.org/10.1038/s41598-021-86132-2

10. Al-Awar A, Almási N, Szabó R, et al. Novel potentials of the DPP-4 inhibitor sitagliptin against ischemia-reperfusion (I/R) injury in rat ex-vivo heart model. Int J Mol Sci. 2018;19(10):3226. doi: https://doi.org/10.3390/ijms19103226

11. Yoda K, Imanishi Y, Yoda M, et al. Impaired response of FGF-23 to oral phosphate in patients with type 2 diabetes: a possible mechanism of atherosclerosis. J Clin Endocrinol Metab. 2012;97 (11):E2036-2043. doi: https://doi.org/10.1210/jc.2012-2024

12. Monami M, Dicembrini I, Antenore A, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011;34(11):2474-2476. doi: https://doi.org/10.2337/dc11-1099

13. Dombrowski S, Kostev K, Jacob L. Use of dipeptidyl peptidase-4 inhibitors and risk of bone fracture in patients with type 2 diabetes in Germany-a retrospective analysis of real-world data. Osteoporos Int. 2017;28(8):2421-2428. doi: https://doi.org/10.1007/s00198-017-4051-y

14. Fu J, Zhu J, Hao Y, et al. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials. Sci Rep. 2016;6:29104. doi: https://doi.org/10.1038/srep29104

15. Zheng T, Yang L, Liu Y, et al. Plasma DPP4 activities are associated with osteoporosis in postmenopausal women with normal glucose tolerance. J Clin Endocrinol Metab. 2015;100(10):3862-3870. doi: https://doi.org/10.1210/jc.2015-2233

16. Kim SW, Cho EH. High levels of serum DPP-4 activity are associated with low bone mineral density in obese postmenopausal women. Endocrinol Metab (Seoul). 2016;31(1):93-99. doi: https://doi.org/10.3803/EnM.2016.31.1.93

17. Yu AS, Hirayama BA, Timbol G, et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6):C1277-84. doi: 10.1152/ajpcell.00296.2010.

18. Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016;18(12):1199-1206. doi: https://doi.org/10.1111/dom.12742

19. Ruanpeng D, Ungprasert P, Sangtian J, Harindhanavudhi T. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab Res Rev. 2017;33(6):e2903. doi: https://doi.org/10.1002/dmrr.2903

20. Thrailkill KM, Clay Bunn R, Nyman JS, et al. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. 2016;82:101-107. doi: https://doi.org/10.1016/j.bone.2015.07.025

21. Thrailkill KM, Nyman JS, Bunn RC, et al. The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes. Bone. 2017;94:141-151. doi: https://doi.org/10.1016/j.bone.2016.10.026


Supplementary files

1. Рисунок 1. Дизайн исследования
Subject
Type Исследовательские инструменты
View (484KB)    
Indexing metadata ▾
2. Рис. 2. Динамика постпрандиальных значений гликемии в ходе эксперимента. Результаты представлены в виде медианы (25; 75)%. * — p<0,05 по сравнению с группой «Контроль». СТР — стрептозотоцин; ----- постпрандиальный уровень гликемии в норме.
Subject
Type Исследовательские инструменты
View (114KB)    
Indexing metadata ▾
3. Рис. 3. Показатели фосфорно-кальциевого обмена на фоне различных вариантов сахароснижающей терапии. А — концентрация общего кальция; Б — концентрация фосфора; В — кальций-фосфорное произведение; Г — концентрация фактора роста фибробластов-23. Результаты представлены в виде коробчатых графиков (box-plot), средняя линия соответствует медиане, центральная часть графика — нижнему (25%) и верхнему (75%) квартилям распределения, линии погрешностей — минимальному и максимальному значению в группе. FGF23 — фактор роста фибробластов-23. * — р<0,05 по сравнению с группой «Контроль»; § — р<0,05 по сравнению с группой «СД»; ¶ — р<0,05 по сравнению с группой «СД+СИТА», & — р<0,05 между группами «СД+ЭМПА» и «СД+КАНА».
Subject
Type Исследовательские инструменты
View (297KB)    
Indexing metadata ▾
4. Рис. 4. Параметры костного обмена на фоне различных вариантов сахароснижающей терапии. А — концентрация остеокальцина; Б — концентрация остеопротегерина; В — концентрация лиганда активатора рецептора ядерного фактора каппа-бета (RANKL); Г — соотношение RANKL/остеопротегерин. Результаты представлены в виде коробчатых графиков (box-plot), средняя линия соответствует медиане, центральная часть графика — нижнему (25%) и верхнему (75%) квартилям распределения, линии погрешностей — минимальному и максимальному значению в группе. ОС — остеокальцин; OPG — остеопротегерин; RANKL — лиганд активатора рецептора ядерного фактора каппа-бета. * — р<0,05 по сравнению с группой «Контроль»; § — р<0,05 по сравнению с группой «СД»; ¶ — р<0,05 по сравнению с группой «СД+СИТА»; & — р<0,05 между группами «СД+ЭМПА» и «СД+КАНА».
Subject
Type Исследовательские инструменты
View (272KB)    
Indexing metadata ▾
5. Рис. 5. Эпифизарная область кости с костными балками. А — «Контроль»; Б — «СД»; В — «СД+СИТА»; Г — «СД+ЭМПА»; Д — «СД+КАНА». Окраска гематоксилином-эозином, х100.
Subject
Type Исследовательские инструменты
View (778KB)    
Indexing metadata ▾

Review

For citations:


Timkina N.V., Simanenkova A.V., Karonova T.L., Vlasov T.D., Semenova N.Yu., Bairamov А.A., Timofeeva V.A., Shimshilashvili A.A., Shlyakhto E.V. Comparative evaluation of Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors influence on bone turnover markers in rats with experimental type 2 diabetes mellitus. Osteoporosis and Bone Diseases. 2021;24(4):27-38. (In Russ.) https://doi.org/10.14341/osteo12926

Views: 882


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)