Preview

Osteoporosis and Bone Diseases

Advanced search

Spondyloepiphyseal dysplasias in the structure of idiopathic stunting in children

https://doi.org/10.14341/osteo13172

Abstract

Hereditary skeletal dysplasias (HSD) are primary growth disorders; occur with a frequency of 1: 5000 newborns; characterized by wide phenotypic heterogeneity. Diagnosis of НSD is based on clinical symptoms (dyspropotion of body segments), radiographic characteristics of bone mineralization, maturation and morphology, and molecular genetic studies. Treatment of this group of patients must be multidisciplinary, since it affects not only skeleton. The role of the pediatric endocrinologist is to assess the growth potential of these patients and suggest the most optimal treatment. The review provides data on various types of spondyloepi(meta)physeal dysplasias (SE(M)D), a large heterogeneous group of HSD associated with short stature. Clinical manifestations of SEMD include short stature, disorders in development of spondyles, epiphyses and metaphyses of tubular bones, advanced bone age, etc. It is necessary to differentiate the most common causes of short stature from genetic skeletal diseases, which are characterized by wide phenotypic heterogeneity and require careful examination. In this review, we analyse the literature data on spondyloepiphyseal dysplasia, as one of the causes of idiopathic short stature in children.

About the Authors

M. V. Sekinaeva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Madina V. Sekinaeva - Clinical resident of the Department of Pediatric diseases.

119021, Moscow, Bolshaya Pirogovskaya Street, 19, building 2


Competing Interests:

none



A. V. Vitebskaya
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Alisa V. Vitebskaya - MD, endocrinologist, Associate Professor of the Department of Pediatric Diseases.

Moscow


Competing Interests:

none



Yu. V. Tikhonovich
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Yulia V. Tikhonovich - MD, Pediatric endocrinologist, head of the pediatric endocrinology department.

Moscow


Competing Interests:

none



References

1. Nagaeva EV, Shiryaeva TY, Peterkova VA, et al. Russian national consensus. Diagnostics and treatment of hypopituitarism in children and adolescences. Problems of Endocrinology. 2018;64(6):402-411 (In Russ.) doi: https://doi.org/10.14341/probl10091

2. International Classification of Pediatric Endocrine Diagnoses (ICPED), 2015, ICPED code 1

3. Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327-341. doi: https://doi.org/10.1097/GIM.0b013e3181daae9b

4. Gică N, Mîrza G, Gică C, et al. Skeletal Dysplasia: A Case Report. Diagnostics. 2023. doi: https://doi.org/10.3390/diagnostics13182905

5. Mortier GR, Cohn DH, Cormier-Daire V, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179(12):2393-2419. doi: https://doi.org/10.1002/ajmg.a.61366

6. Borochowitz ZU, Scheffer D, Adir V, et al. Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD. J Med Genet. 2004;41(5):366-72. doi: https://doi.org/10.1136/jmg.2003.013342

7. Linglart A, Merzoug V, Lambert A-S, Adamsbaum C. Bone dysplasia. Annales d’Endocrinologie. 2017;78(2):114-122 doi: https://doi.org/10.1016/j.ando.2017.04.011

8. Аpajasalo M, Sintonen H, Rautonen J, Kaitila I. Health-related quality of life of patients with genetic skeletal dysplasias. Eur J Pediatr. 1998;157:114–21

9. Rani D, Shrestha R, Kanchan T, Krishan K. Short Stature. 2023 Mar 13. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024

10. Cao Y, Guan X, Li S, et al. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med. 2022;10(5). doi: https://doi.org/10.1002/mgg3.1916

11. Anderson IJ, Goldberg RB, Marion RW, et al. Spondyloepiphyseal dysplasia congenita: genetic linkage to type II collagen (COL2AI). Am J Hum Genet. 1990;46:896-901

12. Nenna R, Turchetti A, Mastrogiorgio G, Midulla F. COL2A1 Gene Mutations: Mechanisms of Spondyloepiphyseal Dysplasia Congenita. Appl Clin Genet. 2019;12:235-238

13. Terhal PA, Nievelstein RJ, Verver EJ, et al. A study of the clinical and radiological features in a cohort of 93 patients with a COL2A1 mutation causing spondyloepiphyseal dysplasia congenita or a related phenotype. Am J Med Genet A. 2015;167A:461-475

14. Turner LM, Steffensen TS, Leroy J, Gilbert-Barness E. Spondyloepiphyseal dysplasia congenita. Fetal Pediatr Pathol. 2010;29:57-62

15. Morita M, Miyamoto K, Nishimoto H, Hosoe H, Shimizu K. Thoracolumbar kyphosing scoliosis associated with spondyloepiphyseal dysplasia congenita: a case report. Spine J. 2005;5:217-220

16. LeDoux MS, Naftalis RC, Aronin PA. Stabilization of the cervical spine in spondyloepiphyseal dysplasia congenita. Neurosurgery. 1991;28:580-583

17. Miyoshi K, Nakamura K, Haga N, Mikami Y. Surgical treatment for atlantoaxial subluxation with myelopathy in spondyloepiphyseal dysplasia congenita. Spine (Phila Pa 1976). 2004;29:E488-E491

18. Bayhan IA, Abousamra O, Rogers KJ, Bober MB, Miller F, Mackenzie WG. Valgus Hip Osteotomy in Children With Spondyloepiphyseal Dysplasia Congenita: Midterm Results. J Pediatr Orthop. 2019;39:282-288

19. Tiller GE, Polumbo PA, Weis MA, et al. Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat Genet. 1995;11(1):87-89. doi: https://doi.org/10.1038/ng0995-87

20. Murdoch JL, Walker BA. A ‘new’ form of spondylometaphyseal dysplasia. Birth Defects Orig. Art. Ser. 1969;V(4):368-370

21. Marik I, Marikova O, Zemkova D, Kuklik M, Kozlowski K. Dominantly inherited progressive pseudorheumatoid dysplasia with hypoplastic toes. Skeletal Radiol. 2004;33(3):157-164. doi: https://doi.org/10.1007/s00256-003-0708-z

22. Kozlowski K, Marik I, Marikova O, Zemkova D, Kuklik M. Czech Dysplasia Metatarsal Type. Am J Med Genet Part A. 2004;129A(1):87-91. doi: https://doi.org/10.1002/ajmg.a.30132

23. Williams CJ, Considine EL, Knowlton RG, et al. Spondyloepiphyseal dysplasia and precocious osteoarthritis in a family with an Arg75→Cys mutation in the procollagen type II gene (COL2A1). Hum Genet. 1993. doi: https://doi.org/10.1007/BF00216458

24. Tzschach A, Tinschert S, Kaminsky E, Lusga E, Mundlos S, Graul-Neumann LM. Czech dysplasia: Report of a large family and further delineation of the phenotype. Am J Med Genet Part A. 2008. doi: https://doi.org/10.1002/ajmg.a.32389

25. Bleasel JF, Bisagni-Faure A, Holderbaum D, et al. Type II procollagen gene (COL2A1) mutation in exon 11 associated with spondyloepiphyseal dysplasia, tall stature and precocious osteoarthritis. J Rheumatol. 1995;22:255-261

26. Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol. 2018;61(2):T271-T283. doi: https://doi.org/10.1530/JME-18-0086

27. Fuda H, Shimizu C, Lee YC, Akita H, Strott CA. Characterization and expression of human bifunctional 3’-phosphoadenosine 5’-phosphosulphate synthase isoforms. Biochem J. 2002. doi: https://doi.org/10.1042/BJ20020044

28. Schröder E, Gebel L, Eremeev AA, et al. Human PAPS Synthase Isoforms Are Dynamically Regulated Enzymes with Access to Nucleus and Cytoplasm. Pastore A, ed. PLoS One. 2012;7(1):e29559. doi: https://doi.org/10.1371/journal.pone.0029559

29. Ahmad M, Ul Haque MF, Ahmad W, et al. Distinct, autosomal recessive form of spondyloepimetaphyseal dysplasia segregating in an inbred Pakistani kindred. Am J Med Genet. 1998;78(5):468-473. doi: https://doi.org/10.1002/(SICI)1096-8628(19980806)78:5<468::AID-AJMG13>3.0.CO;2-D

30. Faiyaz Ul Haque M, King LM, Krakow D, et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet. 1998. doi: https://doi.org/10.1038/2458

31. Noordam C, Dhir V, McNelis JC, et al. Inactivating PAPSS2 Mutations in a Patient with Premature Pubarche . N Engl J Med. 2009. doi: https://doi.org/10.1056/nejmoa0810489

32. Helvacıoğlu D, Güran T. Bone Phenotype is Always Present But Androgen Excess is Less Frequently Seen in PAPSS2 Deficiency. J Clin Res Pediatr Endocrinol. 2024;16(1):4-10. doi: https://doi.org/10.4274/jcrpe.galenos.2023.2023-12-10

33. Eltan M, Yavas Abali Z, Arslan Ates E, et al. Low DHEAS Concentration in a Girl Presenting with Short Stature and Premature Pubarche: A Novel PAPSS2 Gene Mutation. Horm Res Paediatr. 2019;92(4):262-268. doi: https://doi.org/10.1159/000502114

34. Bownass L, Abbs S, Armstrong R, et al. PAPSS2 ‐related brachyolmia: Clinical and radiological phenotype in 18 new cases. Am J Med Genet Part A. 2019;179(9):1884-1894. doi: https://doi.org/10.1002/ajmg.a.61282

35. Anderson IJ, Tsipouras P, Scher C, et al. Spondyloepiphyseal dysplasia, mild autosomal dominant type is not due to primary defects of type II collagen. Am J Med Genet. 1990;37(2):272-6. doi: https://doi.org/10.1002/ajmg.1320370223

36. Sentchordi-Montané L, Aza-Carmona M, Benito-Sanz S, et al. Heterozygous aggrecan variants are associated with short stature and brachydactyly: Description of 16 probands and a review of the literature. Clin Endocrinol (Oxf). 2018;88(6):820-829. doi: https://doi.org/10.1111/cen.13581

37. Tompson SW, Merriman B, Funari VA, et al. A Recessive Skeletal Dysplasia, SEMD Aggrecan Type, Results from a Missense Mutation Affecting the C-Type Lectin Domain of Aggrecan. Am J Hum Genet. 2009;84(1):72-79. doi: https://doi.org/10.1016/j.ajhg.2008.12.001

38. Fukuhara Y, Cho SY, Miyazaki O, et al. The second report on spondyloepimetaphyseal dysplasia, aggrecan type: A milder phenotype than originally reported. Clin Dysmorphol. 2019. doi: https://doi.org/10.1097/MCD.0000000000000241

39. Nishimura G, Kizu R, Kijima Y, et al. Spondyloepiphyseal dysplasia Maroteaux type: Report of three patients from two families and exclusion of type II collagen defects. Am J Med Genet. 2003. doi: https://doi.org/10.1002/ajmg.a.20095

40. Smith AC, Mears AJ, Bunker R, et al. Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia. J Med Genet. 2014;51(7):470-474. doi: https://doi.org/10.1136/jmedgenet-2013-102218

41. Peshimam N, Farah H, Caswell R, et al. Sedaghatian spondylometaphyseal dysplasia in two siblings. Eur J Med Genet. 2022;65(8):104541. doi: https://doi.org/10.1016/j.ejmg.2022.104541

42. Ayalla F, Shani BH, Limor K, et al. Sedaghatian-type spondylometaphyseal dysplasia: Whole exome sequencing in neonatal dry blood spots enabled identification of a novel variant in GPX4. European Journal of Medical Genetics. 2020;63(11):104020

43. Aygun C, Celik FC, Nural MS, et al. Simplified gyral pattern with cerebellar hypoplasia in Sedaghatian type spondylometaphyseal dysplasia: a clinical report and review of the literature. Am J Med Genet A. 2012;158A(6):1400-5. doi: https://doi.org/10.1002/ajmg.a.35306

44. Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nat Med. 2019;25(4):583-590. doi: https://doi.org/10.1038/s41591-019-0353-2

45. Strauss KA, Jinks RN, Puffenberger EG, et al. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ lon protease. Am J Hum Genet. 2015. doi: https://doi.org/10.1016/j.ajhg.2014.12.003

46. Tang Y, Liu Y-X, Sheng Y, Fan L-L, Zhang A-Q, Zheng Z-F. The first case report of CODAS syndrome in Chinese population caused by two LONP1 pathogenic mutations. Front Genet. 2023;13. doi: https://doi.org/10.3389/fgene.2022.1031856

47. Gedeon AK, Tiller GE, Le Merrer M, et al. The molecular basis of X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet. 2001. doi: https://doi.org/10.1086/320592

48. Stenson PD, Mort M, Ball E V., et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136(6):665-677. doi: https://doi.org/10.1007/s00439-017-1779-6

49. Zhang C, Du C, Ye J, et al. A novel deletion variant in TRAPPC2 causes spondyloepiphyseal dysplasia tarda in a five-generation Chinese family. BMC Med Genet. 2020. doi: https://doi.org/10.1186/s12881-020-01052-8

50. Kong L, Wang D, Li S, et al. Clinical Diagnosis of X-Linked Spondyloepiphyseal Dysplasia Tarda and a Novel Missense Mutation in the Sedlin Gene (SEDL). Int J Endocrinol. 2018;2018:8263136. doi: https://doi.org/10.1155/2018/8263136


Supplementary files

Review

For citations:


Sekinaeva M.V., Vitebskaya A.V., Tikhonovich Yu.V. Spondyloepiphyseal dysplasias in the structure of idiopathic stunting in children. Osteoporosis and Bone Diseases. 2024;27(3):28-36. (In Russ.) https://doi.org/10.14341/osteo13172

Views: 281


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)