Vitamin D metabolism and regulation of calciumphosphorus homeostasis in patients with chronic kidney disease
https://doi.org/10.14341/osteo13197
Abstract
Chronic kidney disease (CKD) is associated with significant disturbances in mineral and vitamin D metabolism, leading to the development of CKD-related mineral and bone disorders (CKD-MBD) and an increased risk of cardiovascular complications, fractures, and mortality. This paper reviews the mechanisms of calcium-phosphorus homeostasis and vitamin D metabolism regulation in CKD, focusing also on the roles of parathyroid hormone (PTH), fibroblast growth factor-23 (FGF-23) and the Klotho protein. Modern approaches to laboratory diagnostics and target mineral parameters in CKD patients are discussed, as well as the potential use of novel biomarkers, such as the 24,25(OH)2D/25(OH)D ratio (VMR) and 1,24,25(OH)3D/1,25(OH)2D ratio (1,25VMR). This review highlights the need for further research to optimize the diagnosis and treatment of mineral disturbances in CKD patients.
About the Authors
A. S. BondarenkoRussian Federation
Axenia S. Bondarenko, MD
11 Dm.Ulyanova street, 117292 Moscow
Competing Interests:
none
L. Ya. Rozhinskaya
Russian Federation
Liudmila Ya. Rozhinskaya, MD, PhD, Professor
11 Dm.Ulyanova street, 117292 Moscow
Competing Interests:
none
A. Yu. Zhukov
Russian Federation
Artem Yu. Zhukov, MD
11 Dm.Ulyanova street, 117292 Moscow
Competing Interests:
none
Zh. E. Belaya
Russian Federation
Zhanna E. Belaya, MD, PhD
11 Dm.Ulyanova street, 117292 Moscow
Competing Interests:
none
G. A. Melnichenko
Russian Federation
Galina A. Melnichenko, MD, PhD, Professor
11 Dm.Ulyanova street, 117292 Moscow
Competing Interests:
none
References
1. Klinicheskie rekomendacii Ministerstva zdravoohraneniya Rossijskoj Federacii «Hronicheskaya bolezn’ pochek». 2024. Tekst: elektronnyj. Rubrikator klinicheskih rekomendacij: sajt. (In Russ.).
2. Francis A, Harhay MN, Ong ACM, et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat Rev Nephrol. 2024;20(7):473-485. doi: https://doi.org/10.1038/s41581-024-00820-6
3. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945-1953. doi: https://doi.org/10.1038/sj.ki.5000414
4. Abdalbary M, Sobh M, Elnagar S, et al. Management of osteoporosis in patients with chronic kidney disease. Osteoporosis International. 2022;33(11):2259-2274. doi: https://doi.org/10.1007/s00198-022-06462-3
5. Yamada S, Nakano T. Role of Chronic Kidney Disease (CKD)–Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb. 2023;30(8):RV22006. doi: https://doi.org/10.5551/jat.RV22006
6. Luo L, Chen Q. Effect of CKD–MBD phenotype on health-related quality of life in patients receiving maintenance hemodialysis: A cross-sectional study. Journal of International Medical Research. 2020;48(2). doi: https://doi.org/10.1177/0300060519895844
7. Magagnoli L, Cozzolino M, Caskey FJ, et al. Association between CKD-MBD and mortality in older patients with advanced CKD—results from the EQUAL study. Nephrology Dialysis Transplantation. 2023;38(11):2562-2575. doi: https://doi.org/10.1093/ndt/gfad100
8. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. Journal of the American Society of Nephrology. 2004;15(8):2208-2218. doi: https://doi.org/10.1097/01.ASN.0000133041.27682.A2
9. Raue F, Haag C, Schulze E, Frank-Raue K. The Role of the Extracellullar Calcium-Sensing Receptor in Health and Disease. Experimental and Clinical Endocrinology & Diabetes. 2006;114(08):397-405. doi: https://doi.org/10.1055/s-2006-924315
10. Murray SL, Wolf M. Calcium and Phosphate Disorders: Core Curriculum 2024. American Journal of Kidney Diseases. 2024;83(2):241-256. doi: https://doi.org/10.1053/j.ajkd.2023.04.017
11. Quarles LD. Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens. 2019;28(1):16-25. doi: https://doi.org/10.1097/MNH.0000000000000467
12. Prabhu A V, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138-151. doi: https://doi.org/10.1016/j.plipres.2016.09.003
13. Prabhu A V, Luu W, Sharpe LJ, Brown AJ. Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. Journal of Biological Chemistry. 2016;291(16):8363-8373. doi: https://doi.org/10.1074/jbc.M115.699546
14. Wacker M, Holick MF. Sunlight and Vitamin D. Dermatoendocrinol. 2013;5(1):51-108. doi: https://doi.org/10.4161/derm.24494
15. Jäpelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013;4. doi: https://doi.org/10.3389/fpls.2013.00136
16. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams Textbook of Endocrinology. 15th ed. Philadelphia, PA: Elsevier; 2025.
17. Borel P, Caillaud D, Cano NJ. Vitamin D Bioavailability: State of the Art. Crit Rev Food Sci Nutr. 2015;55(9):1193-1205. doi: https://doi.org/10.1080/10408398.2012.688897
18. Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. Journal of Clinical Investigation. 1971;50(3):679-687. doi: https://doi.org/10.1172/JCI106538
19. Abboud M, Puglisi DA, Davies BN, et al. Evidence for a Specific Uptake and Retention Mechanism for 25-Hydroxyvitamin D (25OHD) in Skeletal Muscle Cells. Endocrinology. 2013;154(9):3022-3030. doi: https://doi.org/10.1210/en.2012-2245
20. Bikle DD. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem Biol. 2014;21(3):319-329. doi: https://doi.org/10.1016/j.chembiol.2013.12.016
21. Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of Cytochrome P450 2R1. Journal of Biological Chemistry. 2003;278(39):38084-38093. doi: https://doi.org/10.1074/jbc.M307028200
22. Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW. Structural Analysis of CYP2R1 in Complex with Vitamin D3. J Mol Biol. 2008;380(1):95-106. doi: https://doi.org/10.1016/j.jmb.2008.03.065
23. Alonso N, Zelzer S, Eibinger G, Herrmann M. Vitamin D Metabolites: Analytical Challenges and Clinical Relevance. Calcif Tissue Int. 2022;112(2):158-177. doi: https://doi.org/10.1007/s00223-022-00961-5
24. Bailie GR, Johnson CA. Comparative Review of the Pharmacokinetics of Vitamin D Analogues. Semin Dial. 2002;15(5):352-357. doi: https://doi.org/10.1046/j.1525-139X.2002.00086.x
25. Takeyama Kichi, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D 3 1α-Hydroxylase and Vitamin D Synthesis. Science (1979). 1997;277(5333):1827-1830. doi: https://doi.org/10.1126/science.277.5333.1827
26. Fraser DR, Kodicek E. Unique Biosynthesis by Kidney of a Biologically Active Vitamin D Metabolite. Nature. 1970;228(5273):764-766. doi: https://doi.org/10.1038/228764a0
27. Nykjaer A, Dragun D, Walther D, et al. An Endocytic Pathway Essential for Renal Uptake and Activation of the Steroid 25-(OH) Vitamin D3. Cell. 1999;96(4):507-515. doi: https://doi.org/10.1016/S0092-8674(00)80655-8
28. Liu, Yu, Carling, et al. Regulation of gp330/megalin expression by vitamins A and D. Eur J Clin Invest. 1998;28(2):100-107. doi: https://doi.org/10.1046/j.1365-2362.1998.00253.x
29. Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. Journal of Clinical Investigation. 1983;72(5):1856-1860. doi: https://doi.org/10.1172/JCI111147
30. Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review. Bone Rep. 2018;8:255-267. doi: https://doi.org/10.1016/j.bonr.2018.02.004
31. Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523(1):9-18. doi: https://doi.org/10.1016/j.abb.2011.11.003
32. Prosser DE, Kaufmann M, O’Leary B, Byford V, Jones G. Single A326G mutation converts human CYP24A1 from 25-OH-D 3 -24-hydroxylase into -23-hydroxylase, generating 1α,25-(OH) 2 D 3 -26,23-lactone. Proceedings of the National Academy of Sciences. 2007;104(31):12673-12678. doi: https://doi.org/10.1073/pnas.0702093104
33. Cappellani D, Brancatella A, Kaufmann M, et al. Hereditary Hypercalcemia Caused by a Homozygous Pathogenic Variant in the CYP24A1 Gene: A Case Report and Review of the Literature. Case Rep Endocrinol. 2019;2019:1-7. doi: https://doi.org/10.1155/2019/4982621
34. Jones G, Kaufmann M. Diagnostic Aspects of Vitamin D: Clinical Utility of Vitamin D Metabolite Profiling. JBMR Plus. 2021;5(12). doi: https://doi.org/10.1002/jbm4.10581
35. Molnár F, Sigüeiro R, Sato Y, et al. 1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor. PLoS One. 2011;6(3):e18124. doi: https://doi.org/10.1371/journal.pone.0018124
36. Kamao M, Tatematsu S, Hatakeyama S, et al. C-3 Epimerization of Vitamin D3 Metabolites and Further Metabolism of C-3 Epimers. Journal of Biological Chemistry. 2004;279(16):15897-15907. doi: https://doi.org/10.1074/jbc.M311473200
37. Astecker N, Satyanarayana Reddy G, Herzig G, Vorisek G, Schuster I. 1α,25-Dihydroxy-3-epi-vitamin D3 a physiological metabolite of 1α,25-dihydroxyvitamin D3: Its production and metabolism in primary human keratinocytes. Mol Cell Endocrinol. 2000;170(1-2):91-101. doi: https://doi.org/10.1016/S0303-7207(00)00330-0
38. Singh RJ, Taylor RL, Reddy GS, Grebe SKG. C-3 Epimers Can Account for a Significant Proportion of Total Circulating 25-Hydroxyvitamin D in Infants, Complicating Accurate Measurement and Interpretation of Vitamin D Status. J Clin Endocrinol Metab. 2006;91(8):3055-3061. doi: https://doi.org/10.1210/jc.2006-0710
39. Granado-Lorencio F, Blanco-Navarro I, Pérez-Sacristán B, Donoso-Navarro E, Silvestre-Mardomingo R. Serum levels of 3-Epi-25-OH-D3 during Hypervitaminosis D in Clinical Practice. J Clin Endocrinol Metab. 2012;97(12):E2266-E2270. doi: https://doi.org/10.1210/jc.2012-2627
40. Zerwekh JE. Blood biomarkers of vitamin D status. Am J Clin Nutr. 2008;87(4):1087S-1091S. doi: https://doi.org/10.1093/ajcn/87.4.1087S
41. Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. Int J Mol Sci. 2020;21(18):6573. doi: https://doi.org/10.3390/ijms21186573
42. Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. Int J Mol Sci. 2020;21(18):6573. doi: https://doi.org/10.3390/ijms21186573
43. Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M. Vitamin D and DBP: The free hormone hypothesis revisited. J Steroid Biochem Mol Biol. 2014;144:132-137. doi: https://doi.org/10.1016/j.jsbmb.2013.09.012
44. Abboud M, Puglisi DA, Davies BN, et al. Evidence for a Specific Uptake and Retention Mechanism for 25-Hydroxyvitamin D (25OHD) in Skeletal Muscle Cells. Endocrinology. 2013;154(9):3022-3030. doi: https://doi.org/10.1210/en.2012-2245
45. Hernando N, Pastor‐Arroyo EM, Marks J, et al. 1,25(OH) 2 vitamin D 3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J Physiol. 2021;599(4):1131-1150. doi: https://doi.org/10.1113/JP280345
46. Saito H, Maeda A, Ohtomo S ichi, et al. Circulating FGF-23 Is Regulated by 1α,25-Dihydroxyvitamin D3 and Phosphorus in Vivo. Journal of Biological Chemistry. 2005;280(4):2543-2549. doi: https://doi.org/10.1074/jbc.M408903200
47. Verlinden L, Carmeliet G. Integrated View on the Role of Vitamin D Actions on Bone and Growth Plate Homeostasis. JBMR Plus. 2021;5(12). doi: https://doi.org/10.1002/jbm4.10577
48. Nemere I, Dormanen MC, Hammond MW, Okamura WH, Norman AW. Identification of a specific binding protein for 1 alpha,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. Journal of Biological Chemistry. 1994;269(38):23750-23756. doi: https://doi.org/10.1016/S0021-9258(17)31579-X
49. Buitrago C, Pardo VG, Boland R. Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol. 2013;136:125-130. doi: https://doi.org/10.1016/j.jsbmb.2013.02.013
50. Vassalotti JA, Uribarri J, Chen SC, et al. Trends in Mineral Metabolism: Kidney Early Evaluation Program (KEEP) and the National Health and Nutrition Examination Survey (NHANES) 1999-2004. American Journal of Kidney Diseases. 2008;51(4):S56-S68. doi: https://doi.org/10.1053/j.ajkd.2007.12.018
51. Moranne O, Froissart M, Rossert J, et al. Timing of Onset of CKD-Related Metabolic Complications. Journal of the American Society of Nephrology. 2009;20(1):164-171. doi: https://doi.org/10.1681/ASN.2008020159
52. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrology Dialysis Transplantation. 2012;27(7):2650-2657. doi: https://doi.org/10.1093/ndt/gfs160
53. Dusso A, González EA, Martin KJ. Vitamin D in chronic kidney disease. Best Pract Res Clin Endocrinol Metab. 2011;25(4):647-655. doi: https://doi.org/10.1016/j.beem.2011.05.005
54. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370-1378. doi: https://doi.org/10.1038/ki.2011.47
55. Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int. 2011;79(7):715-729. doi: https://doi.org/10.1038/ki.2010.543
56. Mehrotra R, Kermah D, Budoff M, et al. Hypovitaminosis D in Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology. 2008;3(4):1144-1151. doi: https://doi.org/10.2215/CJN.05781207
57. Michaud J, Naud J, Ouimet D, et al. Reduced Hepatic Synthesis of Calcidiol in Uremia. Journal of the American Society of Nephrology. 2010;21(9):1488-1497. doi: https://doi.org/10.1681/ASN.2009080815
58. Hsu CH, Patel S. Uremic plasma contains factors inhibiting 1 alphahydroxylase activity. Journal of the American Society of Nephrology. 1992;3(4):947-952. doi: https://doi.org/10.1681/ASN.V34947
59. Bachmann S, Schlichting U, Geist B, et al. Kidney-Specific Inactivation of the Megalin Gene Impairs Trafficking of Renal Inorganic Sodium Phosphate Cotransporter (NaPi-IIa). Journal of the American Society of Nephrology. 2004;15(4):892-900. doi: https://doi.org/10.1097/01.ASN.0000120389.09938.21
60. Hyder R, Sprague SM. Secondary Hyperparathyroidism in a Patient with CKD. Clinical Journal of the American Society of Nephrology. 2020;15(7):1041-1043. doi: https://doi.org/10.2215/CJN.13411119
61. Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 2010;77(3):211-218. doi: https://doi.org/10.1038/ki.2009.464
62. Jørgensen HS, de Loor H, Billen J, et al. Vitamin D Metabolites Before and After Kidney Transplantation in Patients Who Are Anephric. American Journal of Kidney Diseases. 2024;84(4):427-436.e1. doi: https://doi.org/10.1053/j.ajkd.2024.03.025
63. Dai B, David V, Alshayeb HM, et al. Assessment of 24,25(OH)2D levels does not support FGF23-mediated catabolism of vitamin D metabolites. Kidney Int. 2012;82(10):1061-1070. doi: https://doi.org/10.1038/ki.2012.222
64. de Boer IH, Sachs MC, Chonchol M, et al. Estimated GFR and Circulating 24,25-Dihydroxyvitamin D3 Concentration: A Participant-Level Analysis of 5 Cohort Studies and Clinical Trials. American Journal of Kidney Diseases. 2014;64(2):187-197. doi: https://doi.org/10.1053/j.ajkd.2014.02.015
65. Hsu S, Zelnick LR, Lin YS, et al. Validation of the 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 ratio as a biomarker of 25-hydroxyvitamin D3 clearance. J Steroid Biochem Mol Biol. 2022;217:106047. doi: https://doi.org/10.1016/j.jsbmb.2021.106047
66. Turner ME, Rowsell TS, White CA, et al. The metabolism of 1,25(OH)2D3 in clinical and experimental kidney disease. Sci Rep. 2022;12(1):10925. doi: https://doi.org/10.1038/s41598-022-15033-9
67. https://kdigo.org/wp-content/uploads/2017/02/KDIGO-2009-CKDMBD-Guideline-English.pdf
68. Jayedi A, Soltani S, Shab-Bidar S. Vitamin D Status and All-Cause Mortality in Patients With Chronic Kidney Disease: A Systematic Review and Dose-Response Meta-Analysis. J Clin Endocrinol Metab. 2017;102(7):2136-2145. doi: https://doi.org/10.1210/jc.2017-00105
69. Yeung WCG, Palmer SC, Strippoli GFM, et al. Vitamin D Therapy in Adults With CKD: A Systematic Review and Meta-analysis. American Journal of Kidney Diseases. 2023;82(5):543-558. doi: https://doi.org/10.1053/j.ajkd.2023.04.003
70. Rossijskaya associaciya endokrinologov. Deficit vitamina D: klinicheskie rekomendacii. 2021. (In Russ.).
71. Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. J Nephrol. 2016;29(1):63-70. doi: https://doi.org/10.1007/s40620-015-0186-0
72. Bikle D, Bouillon R, Thadhani R, Schoenmakers I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J Steroid Biochem Mol Biol. 2017;173:105-116. doi: https://doi.org/10.1016/j.jsbmb.2017.01.007
73. Castillo-Peinado L de los S, Calderón-Santiago M, Herrera-Martínez AD, et al. Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals. Separations. 2022;9(6):141. doi: https://doi.org/10.3390/separations9060141
74. Bosworth CR, Levin G, Robinson-Cohen C, et al. The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int. 2012;82(6):693-700. doi: https://doi.org/10.1038/ki.2012.193
75. Lee S, Chung HJ, Jung S, et al. 24,25-Dihydroxy Vitamin D and Vitamin D Metabolite Ratio as Biomarkers of Vitamin D in Chronic Kidney Disease. Nutrients. 2023;15(3):578. doi: https://doi.org/10.3390/nu15030578
76. Galassi A, Fasulo EM, Ciceri P, et al. 1,25-dihydroxyvitamin D as Predictor of Renal Worsening Function in Chronic Kidney Disease. Results From the PASCaL-1,25D Study. Front Med (Lausanne). 2022;9. doi: https://doi.org/10.3389/fmed.2022.840801
77. Tentori F, Blayney MJ, Albert JM, et al. Mortality Risk for Dialysis Patients With Different Levels of Serum Calcium, Phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS). American Journal of Kidney Diseases. 2008;52(3):519-530. doi: https://doi.org/10.1053/j.ajkd.2008.03.020
78. Cozzolino M, Brancaccio D, Cannella G, et al. VDRA therapy is associated with improved survival in dialysis patients with serum intact PTH <=150 pg/mL: results of the Italian FARO Survey. Nephrology Dialysis Transplantation. 2012;27(9):3588-3594. doi: https://doi.org/10.1093/ndt/gfs108
79. Yu Y, Diao Z, Wang Y, Zhou P, Ding R, Liu W. Hemodialysis patients with low serum parathyroid hormone levels have a poorer prognosis than those with secondary hyperparathyroidism. Ther Adv Endocrinol Metab. 2020;11. doi: https://doi.org/10.1177/2042018820958322
80. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D Therapy and Cardiac Structure and Function in Patients With Chronic Kidney Disease. JAMA. 2012;307(7):674. doi: https://doi.org/10.1001/jama.2012.120
81. Wang AYM, Fang F, Chan J, et al. Effect of Paricalcitol on Left Ventricular Mass and Function in CKD—The OPERA Trial. Journal of the American Society of Nephrology. 2014;25(1):175-186. doi: https://doi.org/10.1681/ASN.2013010103
82. Bellasi A, Mandreoli M, Baldrati L, et al. Chronic Kidney Disease Progression and Outcome According to Serum Phosphorus in Mild-to-Moderate Kidney Dysfunction. Clinical Journal of the American Society of Nephrology. 2011;6(4):883-891. doi: https://doi.org/10.2215/CJN.07810910
83. Lopes MB, Karaboyas A, Bieber B, et al. Impact of longer term phosphorus control on cardiovascular mortality in hemodialysis patients using an area under the curve approach: results from the DOPPS. Nephrology Dialysis Transplantation. 2020;35(10):1794-1801. doi: https://doi.org/10.1093/ndt/gfaa054
84. Fan Z, Li R, Pan M, et al. Relationship between serum phosphorus and mortality in non-dialysis chronic kidney disease patients: evidence from NHANES 2001–2018. BMC Nephrol. 2024;25(1):89. doi: https://doi.org/10.1186/s12882-024-03525-x
85. Lim LM, Kuo HT, Kuo MC, et al. Low serum calcium is associated with poor renal outcomes in chronic kidney disease stages 3–4 patients. BMC Nephrol. 2014;15(1):183. doi: https://doi.org/10.1186/1471-2369-15-183
86. Janmaat CJ, van Diepen M, Gasparini A, et al. Lower serum calcium is independently associated with CKD progression. Sci Rep. 2018;8(1):5148. doi: https://doi.org/10.1038/s41598-018-23500-5
87. Hiyamuta H, Yamada S, Taniguchi M, Nakano T, Tsuruya K, Kitazono T. Causes of death in patients undergoing maintenance hemodialysis in Japan: 10-year outcomes of the Q-Cohort Study. Clin Exp Nephrol. 2021;25(10):1121-1130. doi: https://doi.org/10.1007/s10157-021-02089-6
88. Yamaguchi S, Hamano T, Doi Y, et al. Hidden Hypocalcemia as a Risk Factor for Cardiovascular Events and All-Cause Mortality among Patients Undergoing Incident Hemodialysis. Sci Rep. 2020;10(1):4418. doi: https://doi.org/10.1038/s41598-020-61459-4
89. Kim ED, Watt J, Tereshchenko LG, et al. Associations of serum and dialysate electrolytes with QT interval and prolongation in incident hemodialysis: the Predictors of Arrhythmic and Cardiovascular Risk in End-Stage Renal Disease (PACE) study. BMC Nephrol. 2019;20(1):133. doi: https://doi.org/10.1186/s12882-019-1282-5
90. Taniguchi M, Fukagawa M, Fujii N, et al. Serum Phosphate and Calcium Should Be Primarily and Consistently Controlled in Prevalent Hemodialysis Patients. Therapeutic Apheresis and Dialysis. 2013;17(2):221-228. doi: https://doi.org/10.1111/1744-9987.12030
91. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. Journal of the American Society of Nephrology. 2004;15(8):2208-2218. doi: https://doi.org/10.1097/01.ASN.0000133041.27682.A2
92. Yamada S, Arase H, Tokumoto M, et al. Increased Risk of Infection-Related and All-Cause Death in Hypercalcemic Patients Receiving Hemodialysis: The Q-Cohort Study. Sci Rep. 2020;10(1):6327. doi: https://doi.org/10.1038/s41598-020-63334-8
93. Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone. 2017;100:87-93. doi: https://doi.org/10.1016/j.bone.2016.11.012
94. Pasch A, Block GA, Bachtler M, et al. Blood Calcification Propensity, Cardiovascular Events, and Survival in Patients Receiving Hemodialysis in the EVOLVE Trial. Clinical Journal of the American Society of Nephrology. 2017;12(2):315-322. doi: https://doi.org/10.2215/CJN.04720416
95. Henderson RR, Santiago LM, Spring DA, Harrington AR. Metastatic Myocardial Calcification in Chronic Renal Failure Presenting as Atrioventricular Block. New England Journal of Medicine. 1971;284(22):1252-1253. doi: https://doi.org/10.1056/NEJM197106032842208
Supplementary files
|
1. Рисунок 1. Упрощенная схема метаболизма витамина D в физиологических условиях. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(295KB)
|
Indexing metadata ▾ |
|
2. Риcунок 2. Основные лабораторные изменения, характерные для МКН-ХБП, в зависимости от стадии нарушения почечной функции. Адаптировано из [52]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(273KB)
|
Indexing metadata ▾ |
Review
For citations:
Bondarenko A.S., Rozhinskaya L.Ya., Zhukov A.Yu., Belaya Zh.E., Melnichenko G.A. Vitamin D metabolism and regulation of calciumphosphorus homeostasis in patients with chronic kidney disease. Osteoporosis and Bone Diseases. 2025;28(1):28-37. (In Russ.) https://doi.org/10.14341/osteo13197

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).