Preview

Osteoporosis and Bone Diseases

Advanced search

Features of bone metabolism in diabetes mellitus

Abstract

Patients with diabetes mellitus (DM) have an increased risk of osteoporotic fractures, which is associated with a bone fragility.


Accumulation of advanced glycation end products, hyperhomocysteinemia causes increased apoptosis of osteocytes, decreased bone formation and bone remodeling in DM. Adiponectin stimulates osteocalcin expression and osteoblast differentiation through the activation of AMPK. AMPK-activation stimulates differentiation and mineralization of osteoblasts. Hypoadiponectinemia, which is often observed in obesity and diabetes, can causes bone fragility.


Diabetes mellitus is a state of low bone turnover, which is confirmed by decreased markers of bone formation (osteocalcin, P1NP), decreased markers of bone resorption (CTX, TRAP), increased regulatory markers of bone remodeling (OPG, sclerostin).


Thus, the study of the pathophysiology of bone metabolism, the level of bone metabolism markers in patients with diabetes mellitus gives broad prospects in understanding the mechanisms of osteoporosis as complication of diabetes mellitus, the selection of targeted therapy and the improvement of early diagnosis of the disease.

About the Authors

Guzel M. Nurullina

Izhevsk State Medical Academy


Russian Federation

MD, PhD-student



Guzyal I. Akhmadullina

Izhevsk State Medical Academy


Russian Federation

MD, PhD, assistant professor



References

1. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes a meta-analysis. Osteoporos Int. 2007;18(4):427-44. doi: 10.1007/s00198-006-0253-4

2. Janghorbani M, Van Dam RM, Willett WC et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495-505 doi: 10.1093/aje/kwm106

3. Yamamoto M, Yamaguchi T, Yamauchi M et al. Diabetic patients have an increased risk of vertebral fractures independent of bone mineral density or diabetic complications. J Bone Miner Res. 2009;24(4):702-709. doi: 10.1359/jbmr.081207

4. Kanazawa I. Interaction between bone and glucose metabolism. Endocr J. 2017;64:1043-1053. doi: 10.1507/endocrj.EJ17-0323

5. Ялочкина Т.О., Белая Ж.Е. Низкотравматичные переломы и костное ремоделирование при сахарном диабете 2 типа. // Ожирение и метаболизм. – 2017. – Т.14. – №. 3 – С.11-18. [Yalochkina TO, Belaya ZhE. Fragility fractures and bone remodeling in type 2 diabetes mellitus. Obesity and metabolism. 2017;14(3):11-18. (In Russ).] doi: 10.14341/OMET2017311-18

6. Grandhee SK, Monnier VM. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991;266: 11649-11653

7. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17(10):1514-23. doi: 10.1007/s00198-006-0155-5

8. Schwartz AV, Garnero P, Hillier TA et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94(7):2380-2386. doi: 10.1210/jc.2008-2498

9. Yamamoto M, Yamaguchi T, Yamauchi M et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(3):1013-9. doi: 10.1210/jc.2007-1270

10. Farlay D, Armas LA, Gineyts E et al. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J Bone Miner Res. 2016;31(1):190-195. doi: 10.1002/jbmr.2607

11. Farr JN, Khosla S. Determinants of bone strength and quality in diabetes mellitus in humans. Bone. 2016;82:28-34. doi: 10.1016/j.bone.2015.07.027

12. Furst JR, Bandeira LC, Fan WW et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502-2510. doi: 10.1210/jc.2016-1437

13. Tanaka K, Yamaguchi T, Kanazawa I et al. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLOY4-A2 cells. Biochem Biophys Res Commun. 2015;461(2):193-199. doi: 10.1016/j.bbrc.2015.02.091

14. Ogawa N, Yamaguchi T, Yano S et al. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 2007;39(12): 871-875. doi: 10.1055/s-2007-991157

15. Okazaki K, Yamaguchi T, Tanaka K et al. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int. 2012;91(4):286-296. doi: 10.1007/s00223-012-9641-2

16. Tanaka K, Yamaguchi T, Kaji H et al. Advanced glycation end products suppress osteoblastic differentiation of stromal cells by activation endoplasmic reticulum stress. Biochem Biophys Res Commun. 2013; 438(3):463-467. doi: 10.1016/j.bbrc.2013.07.126

17. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350(20):2033-2041. doi: 10.1056/NEJMoa032546

18. Yang J, Hu X, Zhang Q et al. Homocysteine level and risk of fracture: A meta-analysis and systematic review. Bone. 2012;51(3):376-382. doi: 10.1016/j.bone.2012.05.024

19. Li J, Zhang H, Yan L et al. Fracture is additionally attributed to hyperhomocysteinemia in men and premenopausal women with type 2 diabetes. J Diabetes Investig. 2014;5(2):236-241. doi: 10.1111/jdi.12149

20. Saito M, Marumo K, Soshi S et al. Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int. 2010;21(4):655-666. doi: 10.1007/s00198-009-0980-4

21. Kanazawa I, Tomita T, Miyazaki S et al. Bazedoxifene ameliorates homocysteine-induced apoptosis and accumulation of advanced glycation end products by reducing oxidative stress in MC3T3-E1 cells. Calcif Tissue Int. 2017;100(3):286-297. doi: 10.1007/s00223-016-0211-x

22. Takeno A, Kanazawa I, Tanaka K et al. Activation of AMPK-activated protein kinase protects against homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by regulating the expressions of NADPH oxidase 1 (Nox1) and Nox2. Bone. 2015;77:135-141. doi: 10.1016/j.bone.2015.04.025.

23. Takeno A, Kanazawa I, Tanaka K et al. Simvastatin rescues homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by decreasing the expressions of NADPH oxidase 1 and 2. Endocr J. 2016;63(4):389-395. doi: 10.1507/endocrj.EJ15-0480

24. Verhaeghe J, Suiker AM, Visser WJ et al. The effects of systemic insulin, insulin-like growth factor-I and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol. 1992;134(3):485-492

25. Pun KK, Lau P, Ho PW. The characterization, regulation, and function of insulin receptors on osteoblast- like clonal osteosarcoma cell line. J Bone Miner Res. 1989;4(6): 853-862

26. Fulzele K, Riddle RC, Digirolamo DJ et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309-19. doi: 10.1016/j.cell.2010.06.002

27. Zhang M, Xuan S, Bouxsein ML et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals and essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005-40012. doi: 10.1074/jbc.M208265200

28. Yakar S, Rosen CJ, Beamer WG et al. Circulating levels of IGF-I directly regulate bone growth and density. J Clin Invest. 2002;110(6):771-781. doi: 10.1172/JCI15463

29. Terada M, Inaba M, Yano Y et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone. 1998;22(1):17-23

30. McCarthy AD, Etcheverry SB, Cortizo AM. Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol. 2001;38(3):113-22

31. Kanazawa I, Yamaguchi T, Yamamoto M et al. Serum insulin-like growth factor-I is associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int. 2007;18(12):1675-1681. doi: 10.1007/s00198-007-0430-0.

32. Morley JE, Baumgartner RN. Cytokine-related aging process. J Gerontol A Biol Sci Med Sci. 2004;59(9):M924-M929

33. Kanazawa I, Yamaguchi T, Yano S et al. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 2007;8:51. doi: 10.1186/1471-2121-8-51

34. Luo XH, Guo LJ, Yuan LQ et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res. 2005;309(1):99-109. doi: 10.1016/j.yexcr.2005.05.021

35. Luo XH, Guo LJ, Xie H et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006;21(10):1648-1656. doi: 10.1359/jbmr.060707

36. Kanazawa I, Yamaguchi T, Yamamoto M et al. Relationships between serum adiponectin levels versus bone mineral density, bone metabolic markers, and vertebral fractures in type 2 diabetes mellitus. Eur J Endocrinol. 2009;160(2):265-73. doi: 10.1530/EJE-08-0642

37. Richards JB, Valdes AM, Burling K et al. Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab. 2007;92(4):1517-1523. doi: 10.1210/jc.2006-2097

38. Johansson H, Oden A, Karlsson MK et al. Waning predictive value of serum adiponectin for fracture risk in elderly men: MrOS Sweden. Osteoporos Int. 2014;25(7):1831-6. doi: 10.1007/s00198-014-2654-0

39. Ruderman NB, Carling D, Prentki M et al. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123(7):2764-2772. doi: 10.1172/JCI67227

40. Motoshima H, Goldstein BJ, Igata M et al. AMPK and cell proliferation- AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006;574(Pt 1):63-71. doi: 10.1113/jphysiol.2006.108324

41. Quinn JM, Tam S, Sims NA et al. Germline deletion of AMP-activated protein kinase beta subunits reduces bone mass without altering osteoclast differentiation or function. FASEB J. 2010; 24(1): 275–285. doi: 10.1096/fj.09-137158

42. Jeyabalan J, Shah M, Viollet B et al. AMP activated protein kinase pathway and bone metabolism. J Endocrinol. 2012;212(3):277-290. doi: 10.1530/JOE-11-0306

43. Shah M, Kola B, Bataveljic A et al. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone. 2010;47(2):309-319. doi: 10.1016/j.bone.2010.04.596.

44. Kanazawa I, Yamaguchi T, Yano S et al. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun. 2008;375(3):414-419. doi: 10.1016/j.bbrc.2008.08.034

45. Jang WG, Kim EJ, Lee KN et al. AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5- dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun. 2011;404(4):1004-1009. doi: 10.1016/j.bbrc.2010.12.099

46. Kang H, Viollet B, Wu D. Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice. J Biol Chem. 2013;288(17):12187-12196. doi: 10.1074/jbc.M112.430389

47. Yokomoto-Umakoshi M, Kanazawa I, Takeno A et al. Activation of AMP-activated protein kinase decreases receptor activator of NF-κB ligand expression and increases sclerostin expression by inhibiting the mevalonate pathway in osteocytic MLOY4 cells. Biochem Biophys Res Commun. 2016;469(4):791-796. doi: 10.1016/j.bbrc.2015.12.072.

48. Jeyabalan J, Shah M, Viollet B et al. Mice lacking AMP-activated protein kinase α1 catalytic subunit have increased bone remodeling and modified skeletal responses to hormonal challenges induced by ovariectomy and intermittent PTH treatment. J Endocrinol. 2012;214(3):349-358. doi: 10.1530/JOE-12-0184

49. Tulipano G, Faggi L, Sibilia V et al. Points of integration between the intracellular energy sensor AMP-activated protein kinase (AMPK) activity and the somatotroph axis function. Endocrine. 2012;42(2):292-298 doi: 10.1007/s12020-012-9732-x

50. Xi G, Rosen CJ, Clemmons DR. IGF-I and IGFBP-2 stimulate AMPK activation and autophagy, which are required for osteoblast differentiation. Endocrinology. 2016; 157(1): 268–281 doi: 10.1210/en.2015-1690.

51. Li Y, Li K. Osteocalcin induced growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice. Horm Metab Res. 2014;46(11):768-73. doi: 10.1055/s-0034-1371869

52. Hygum K, Starup-Linde J, Harslof T et al. Mechanisms in endocrinology: Diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137-R157. doi: 10.1530/EJE-16-0652

53. Laurent MR, Cook MJ, Gielen E et al. Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. Osteoporosis Int. 2016; 27(11):3227–3237. doi:10.1007/s00198-016-3656-x

54. Manolagas SC & Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007;21(11):2605-14. doi:10.1210/me.2007-0259

55. Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci. 2010;1192:437-43. doi: 10.1111/j.1749-6632.2009.05246.x.

56. Garnero P, Sornay-Rendu E, Munoz F et al. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int. 2013;24(2):489-94. doi: 10.1007/s00198-012-1978-x

57. Modder UI, Clowes JA, Hoey K et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res. 2011;26(1):27-34. doi: 10.1002/jbmr.128

58. Ryan ZC, Ketha H, McNulty MS et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci U S A. 2013;110(15):6199-204. doi: 10.1073/pnas.1221255110

59. Keller H, Kneissel M: SOST is a target gene for PTH in bone. Bone. 2005;37(2):148-58. doi: 10.1016/j.bone.2005.03.018

60. Wu Y, Xu SY, Liu SY et al. Upregulated serum sclerostin level in the T2DM patients with femur fracture inhibits the expression of bone formation/remodeling-associated biomarkers via antagonizing Wnt signaling. Eur Rev Med Pharmacol Sci. 2017;21(3):470-478

61. Liu Z, Jiang H, Dong K et al. Different concentrations of glucose regulate proliferation and osteogenic differentiation of osteoblasts via the PI3 kinase/Akt pathway. Implant Dent. 2015;24(1):83-91. doi: 10.1097/ID.0000000000000196

62. Tanaka K-I, Yamaguchi T, Kanazawa I et al. Effects of high glucose and advanced gexpressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun. 2015;461(2):193-9. doi: 10.1016/j.bbrc.2015.02.091

63. Starup-Linde J, Lykkeboe S, Gregersen S et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016;83:149-55. doi: 10.1016/j.bone.2015.11.004

64. Chailurkit LO, Chanprasertyothin S, Rajatanavin R et al. Reduced attenuation of bone resorption after oral glucose in type 2 diabetes. Clinical Endocrinology 2008;68(6):858–862. doi:10.1111/j.1365-2265.2007.03159.x


Supplementary files

1. Fig. 1. The receptor for AGE (RAGE) is expressed on osteoblasts. Hyperglycemia increases expression (RAGE). KPG induces osteoplastic apoptosis and suppresses the growth of osteoblasts. KPG inhibits the differentiation and mineralization of osteoblasts through endoplasmic reticulum dysfunction and the expression of transforming growth factor β (TGFβ), leading to a decrease in bone formation. IRE1α - inositol regulating enzyme 1α. ATF6 - Activating Transcription Factor 6
Subject
Type Исследовательские инструменты
View (74KB)    
Indexing metadata ▾
2. Fig. 2. Hcy (homocysteine) increases intracellular oxidative stress in osteoblasts and induces apoptosis. Hcy inhibits the expression of lysyloxidase, which is the most important enzyme for the formation of collagen cross-links and increases the extracellular accumulation of pentosidine
Subject
Type Исследовательские инструменты
View (58KB)    
Indexing metadata ▾
3. Fig. 3. Slowed bone metabolism in diabetes mellitus
Subject
Type Исследовательские инструменты
View (80KB)    
Indexing metadata ▾

Review

For citations:


Nurullina G.M., Akhmadullina G.I. Features of bone metabolism in diabetes mellitus. Osteoporosis and Bone Diseases. 2017;20(3):82-89. (In Russ.)

Views: 12337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2680 (Print)
ISSN 2311-0716 (Online)